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Design and Development of a Compound Mobile Serial

Robot with Remote Control Application

Abstract

The design of a compound mobile serial robot controlled remotely by a C# program
utilizing the MQTT (Message Queuing Telemetry Transport) protocol is the main
topic of this thesis. The robot is powered by a Raspberry Pi. The advantages of mobility
and serial manipulators are combined in the compound mobile serial robot, allowing
it to carry out difficult tasks in a variety of settings. As the main computer, the
Raspberry Pi gives the robot and its control application connectivity and processing
capability. Data interchange and command execution are made possible by the
integration of the MQTT protocol, which guarantees effective and dependable
connection between the robot and the control system. The integration of the MQTT
protocol, hardware components, mechanical design, kinematic and dynamic analysis
of the robot, and software implementation are all investigated in this study. This thesis
intends to stimulate additional ideas in the field of intelligent and remotely operated
robotic systems by utilizing the capabilities of Raspberry Pi and MQTT. For the
protocol implementation, a 4 DoF serial arm and the mobile station connected to it
were designed with mechanical design and prototype production was made,
additionally direct and inverse kinematics of the robot arm has automatized with the
C# WinForm application, thanks to this developed application, robot arm control was
fully automatized and controlled. The thesis has demonstrated a novel applicacation
of the protocol to a compound mobile serial robot, only there is no video for both

mobile and serial robot arm working at the same time.

Keywords: Compound mobile serial robot, Remote Control, C# Application, MQTT

Protocol, Raspberry Pi, Robotics, Kinematic and Dynamic Analysis.



Uzaktan Kontrol Uygulamali Bilesik Mobil Seri Robot

Tasarimi ve Gelistirilmesi

Oz

Bu tez, Raspberry Pi tarafindan gii¢lendirilen MQTT (Message Queuing Telemetry
Transport) protokoliinii kullanarak uzaktan kontrol edilen bir bilesik hareketli seri
robotun tasarimi ve gelistirilmesine odaklanmaktadir. Bilesik hareketli seri robot,
hareket kabiliyeti ve seri manipiilatorlerin avantajlarin1 bir araya getirerek cesitli
ortamlarda karmagik gorevleri gerceklestirebilme yetenegine sahiptir. Raspberry Pi,
robotun ve kontrol uygulamasinin baglant1 ve isleme yeteneklerini saglayan merkezi
bir bilgisayar olarak hizmet vermektedir. MQTT protokoliiniin entegrasyonu, robot ile
kontrol sistemi arasinda etkili ve gilivenilir iletisimi saglayarak gercek zamanli veri
aligverisi ve komut yiiriitme imkan1 sunmaktadir. Bu arastirma kapsaminda, donanim
bilesenleri, mekanik tasarim, robotun kinematik ve dinamik analizi ile yazilim
uygulamasi incelenmektedir. Bu tez, Raspberry Pi ve MQTT'nin yeteneklerinden
faydalanarak zeki ve uzaktan kontrol edilebilen robot sistemleri alaninda ilave
fikirlerin ortaya ¢ikmasini amaglamaktadir. Protokol implementasyonu i¢in mekanik
tasarim ile 4 serbestlik dereceli bir seri kol ve buna bagli mobil istasyon tasarland1 ve
prototip tretim yapildi, ayn1 zamanda tim ileri ve ters kinematik analizler C#
uygulamasina entegre edeldi ve gercek zamanli veri degisimi ile robot kontrolii
saglandi. Tez, yukaridakilerin uygulanabilirligini gostermistir. Mobil ve robot kolunun

birlikte ayn1 anda ¢alisirken bir videosu bulunmamaktadir.

Anahtar Kelimeler: Bilesik Mobil Seri Robot, Uzaktan Kontrol, C# Uygulamasi,
MQTT Protokolii, Raspberry Pi, Robotik, Akill1 Sistemler, Kinematik ve Dinamik

Analiz.
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1 Introduction

In recent years, the field of robotics has made incredible strides, changing numerous
sectors and pushing the limits of human capability. Mobile serial robots have become
a dynamic and adaptable solution in this field, enabling detailed movements and
complex operations in a range of settings. Parallel to this, a paradigm change has been
brought about by the Internet of Things (IoT), which connects systems and gadgets in
novel ways. Intelligent and remote-controlled robotic systems have been made

possible by the fusion of robotics and the internet of things (10T).

This thesis aims to explore the complexities of designing and developing a compound
mobile serial robot, powered by a remote control C# WinForm Desktop application.
The MQTT (Message Queuing Telemetry Transport) protocol's integration is crucial
since it will allow for flawless coordination and communication between the robot and
its control system. The robot may be remotely controlled while enabling real-time data
interchange and decision-making processes by taking advantage of this protocol's
possibilities. Importantly, the Raspberry Pi will act as the system's main computer as
client, controlling the robot and its control application with the connectivity and

processing capacity as needed.

The compound mobile serial robot, which combines the benefits of mobility and serial
manipulators, provides a revolutionary approach to robotics. The robot can carry out a
variety of duties thanks to its special combination, including negotiating challenging
terrain, handling objects and inspection of them and performing accurate moves in
various environments. The C# program also offers a simple and easy-to-use interface
for controlling the robot's functions and motions remotely without being same network
in safe, additionally automatized calculation and control of the servo motors by the
tool. Users can enter desired angle to the servo motor, can calculate servo motor angles

by end-effector position of the gripper and run the robot arm joints with those angles.



The MQTT protocol is used to greatly increase the efficiency and dependability of
communication between the robot and the control system. The publish-subscribe
architecture of the protocol allows for seamless data transmission and command
execution between the robot and the control application. One of the most crucial points

Is that it offers a secure workplace for challenging tasks.

In this thesis, all the different aspects of designing and creating the compound mobile
serial robot will be explored. The hardware components, mechanical design,
workspace, kinematics, and dynamic analysis of the robot will be examined.
Additionally, Raspberry Pi's computational capability and its interoperability with
communication, actuator, and communication modules will also be analyzed. The
software implementation, based on the creation of the C# remote control application
and the integration of the MQTT protocol for fluid communication using the Python

language for servo motor control on Raspberry Pi, will be studied.

h
1 Controls by
WinForm C# Tool

Ao new oy
0d U0 |00L #9 Bu| L Ag paLEiigng
puUE pagEnagE) aq ||m se|buy Jojopy

MQTT Broker
Topic name:"robot”

Figure 1.1 MQTT protocol overview



The findings of this study will develop robotic devices that can be controlled remotely
and their intelligence and advantages. The MQTT protocol and Raspberry Pi, along
with the compound mobile serial robot, have the potential to transform sectors like
manufacturing, logistics, space sciences, bomb disposal areas. This thesis intends to
inspire additional ideas and direct future research in the area of intelligent and remotely
operated robotic systems by pushing the boundaries of robotics and utilizing the
capabilities of the Raspberry Pi. The publication of the written thesis was presented at
the 4. Baskent International Conference on Multidisciplinary Studies, and the abstract
of the thesis is included in the published book[1].

1.1 Literature Review & Research and Analysis

1.1.1 Remote Control of Robot Arm with five DoF

Explains whole process of making a system for remote control of a robot arm with five
DOF[2]. Serial RS-232 protocol is between PC and Microcontroller, and this
communication is used to operate the arm. Uses TCP/IP protocol for remote control
provides communication between server and client computers and sends information

of position of robot arm. GUI is implemented in MATLAB for user interaction.

For every degree of freedom two pins of microcontroller and two relays are assigned
(pins RDO and RD1 for base, RD2 and RD3 for shoulder, RD4 and RD5 for elbow,
RD6 and RD7 for wrist and RCO and RC1 for fist).

Depending on the state of two pins, there are four situations:

e If both pins are low, two relays controlled by them are open and motor of the
appropriate DOF is not running;

e if one pin is high and another is low, current flows in one direction and motor
IS running in appropriate direction;

o for opposite state of pins, motor is running in opposite direction;

e ‘forbidden combination' is when both pins are high, because then both relays

are active and source is short circuited.

A microcontroller were used to establish a communication with the server PC. The

used communication is the serial communication RS-232. Serial communication is the



most common low-level. To establish communication via ETHERNET, Real VNC
program and MATLAB Server are used. Real VNC program is used to obtain visual
feedback by camera, and MATLAB Server is used For transmission of control
messages from client PC to server PC. The communication was established through
MATLAB using two m-files. First m-file creates serial port and configures its
properties. The communication between the server PC and the microcontroller is
realized using second m-file. In this m-file, function was created to collect data set by
user inside GUI. The user monitor movement of robot arm by camera. GUI is
implemented in MATLAB as show below. TCP/UDP/IP toolbox is used for establish
connection between server and client, VNC server also was used to transmit visual
feedback.

Figure 1.2 GUI for the researched project
1.1.2 Multi-sensor based glove control of industrial mobile robot

arm

Performance and efficiency are more safe than an actual human performing the task
especially in dangerous environments. The aim of this task is to ease an operation's
complexity and hazardousness by only using a single hand to control a mobile robot
with a 6-axis robotic arm[3]. Both mobile robot and robotic arm can be controlled
wirelessly using a wearable data glove that is equipped with multiple sensors and a

microcontroller.



The payload (robot arm) must be carefully placed at the top of the mobile robot in
between its right and left wheels. The pressure sensitive sensor, flex bending sensor,

inertial sensor and Arduino mini is used in the glove.

Bluetooth HC-
05

GY-521 Inertial
Sensor
Arduino Pro Mini

Battery

Pressure Sensor

Flex Sensor §

Figure 1.3 Hand controller of the robot

The mode selection is switched according to the hand action measured by the inertial
sensor IMU, and the signals of the pressure and bending sensors on the data gloves

respectively control various instructions action of the vehicle mode and the robot arm
mode.

[:}hl}t LI iRTnlilucmnrh
rm STAS W
Glove
Mobile
T Bluetooth A

Management
Center

i

User

Figure 1.4 Overview of the article

1.1.3 Wireless Network for Mobile Robot Applications

The idea of a wireless network for information exchange between mobile robot nodes,

which can be utilized for monitoring and control applications, is discussed in the



article[4]. The primary goal is to decrease the amount of energy and computational
power used by robot nodes. A central host computer that can be linked to a cloud
network is outfitted with sensors and communication gear to collect data from each
node and transfer it to it. A Wireless Sensor Network (WSN) is the term used to
describe this system. In order to attain the desired efficiency, the study underlines the
significance of employing appropriate communication protocols. The suggested
method transfers data between networked nodes using the MQTT (MQ Telemetry

Transport) protocol.

The article describes how communication is organized amongst the nodes and outlines
how the system is verified through message exchange between the nodes and the
central system. The main reason for deploying networked mobile robots is to handle
difficult-for-people jobs that are complex and potentially dangerous, like air

monitoring, radiation from nuclear power plant failures, and land pollution assessment.

In conclusion, the article concludes with a proposal for a wireless network for
applications involving mobile robots, highlighting the usage of the MQTT protocol for
effective data transfer between networked nodes. The objective is to use a grid of
networked mobile robots to provide cost- and energy-efficient monitoring and control
applications.

1.1.4 Finger Robotic control use M5Stack board and MQTT

Protocol based
The study on using the MQTT protocol and the M5Stack board to remotely control a

robotic hand's finger is presented in the paper. The goal of the project is to create
remote control technology that will enable robotic fingers to perform various
activities, like pressing buttons and adjusting volume. Servo angles are represented
by values x and y or 1 and 2, and the MQTT protocol simplifies communication. For
operating the robotic finger and using Python and MQTT Brokers to broadcast and
subscribe to data, the study uses blockly programming. The WiFi-enabled M5Stack
board acts as the platform for controlling the finger robot. Additionally, the study
examines aspects like power usage, security, and data transmission, illustrating finger

movement instances and the effects of interference on data transmission.
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Figure 1.5 Architecture Network Design of this research

The use of inverse kinematics for robotic finger control and the MQTT protocol for
communication are the two primary topics which are taken into account for this
thesis to take as an reference of the paper. Here is a more thorough breakdown of

these elements:

a. Inverse Kinematics for Robotic Finger Control:

To demonstrate finger motion, it proposes the planar two-link manipulator model.
The foundation for calculating the joint angles (1 and 2) of the robotic finger is
provided by the forward kinematics equations, which are represented by x and y
coordinates. The study illustrates the relationship between these equations and finger

movement in the planar space.

b. MQTT Protocol for Communication:

The research uses the MQTT (Message Queuing Telemetry Transport) protocol to
make it easier for the robotic finger and distant gadgets to communicate. A well-
liked 10T (Internet of Things) protocol called MQTT is well-known for its
effectiveness and simplicity. Using MQTT Brokers, which serve as a middleman for
data exchange between publishers (who transmit data) and subscribers (who receive

data), is a part of it.

The M5Stack board, which has an ESP8266 WiFi module and is MQTT compatible,
will be used in the study's configuration. The M5Stack board serves as the robotic

finger's controller and talks with MQTT Brokers to transfer data.



1.2 Project Design Processes

a. Job Definition and Task of the Project
b. Conceptual Design
c. Kinematic Analysis
i.  Direct Analysis
ii.  Inverse Analysis
iii.  Jacobian Analysis
d. Dynamic Analysis
I.  Forward Analysis
ii.  Backward Analysis
iii.  Torque Analysis
e. Material, Hardware Selection and Integration
f. Software Development
g. Testing and Evaluation

1.3 Job Definition and Task of the Project

The robot has the benefit of being serial and mobile compound, in addition to allowing
safe and effective use in numerous areas with remote control. This remote control can
be assigned as scheduled tasks and perform certain tasks automatically thanks to the

WinForm C# Tool features.

The robot will basically be based on mechanical or any type of part examination and
analysis it remote or difficult terrains, with the integration of artificial intelligence and
part recognition by the Raspberry Pi. The parts can be picked an place, explosive,

dangerous or can be worked at any point that is closed to human access.

Main goal will be to pick a part from a certain point, define it, place and drop it to a

different point automatically and handle all of these tasks remotely.



2 Design and Analysis of the Serial
Robot

2.1 Conceptual Design

Robot design have been done on SolidWorks. The robot has the structure with 4 DoF.
The kinematic structure of the serial arm is the same as one of the traditional industrial
4-DoF robots. All joints are revolute joint in the robot design. Table-1 shows DH table
of the serial arm and Z axis means the rotation axis of joint.

Figure 2.1 Conceptual Design DH Parameters

Table 1.1 DH Table

i ai-1i 0i-1,1 Si Qi
1 a1 00,1 S1 Q1
2 a1z 01,2 Sz Q2
3 a3 02,3 S3 Qs
4 az4 034 Sa Q4




Length of link (a): It is determined as the distance measured between the mutual

perpendiculars axis.

Torsion angle (a): It is the angle formed between the orthogonal. Projections of along

the pivot axes in a plane perpendicular to the usual normal.
Joint. Offset (S): Length of connections of the normal perpendicular to the joint axis.

Joint. Angle (0): The angle among the orthogonal. Projections which is normal

perpendicular to the. Plane perpendicular to the pivot axes.

The parameters required for the table are defined by making measurements of the

drawing.

e

NG

Figure 2.2 Detailed Mechanical Design of Robot in SolidWorks

In this final design of the serial arm robot there were some issues with the production.

Linkages are restructured according to laser cutting necessities.
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For laser cutting process, robot arm design is restructed in AutoCAD according to laser

cutting production methods. This is shown below.

Figure 2.3 AutoCAD Overall View Figure 2.4 AutoCAD drawing by part

2.2 Kinematic Analysis

Robot kinematics is the study of the motion of robots. In a kinematic analysis, the
position, velocity and acceleration of all connections are calculated regardless of the
forces that cause this motion. Robot kinematics is about redundancy, collision
avoidance and singularity avoidance. When dealing with the kinematics used in robots,
a reference frame assigns each part of the robot, and so a serial arm robot can have

many individual frames assigned to each moving part.

There are two separate problems to be solved in the kinematic analysis of the
manipulator position: direct kinematics and inverse kinematics, which are presented

in the sections in below.
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2.2.1 Workspace Analysis with Matlab Simulation in Simulink

Matrices were defined in the Matlab. Matrix °T, has been found according to the
defined matrices. Then parametrical values of our matrices were entered. For finding

workspace of the system Q angle values are assigned randomly with command of :
Q;=(-6.28*rand(i))

Random angle values given in matlab as :

g1=(-6.28*rand(1))  g2=(6.28*rand(1)) q3=(-6.28*rand(1)) g4=0
Example of finding “~T; matrices in matlab is shown as:

% T01

tOltransx =[1 0 0 a01;0 1 0 0;00 1 0;00 0 1]

tOlrotx=[1 0 O 0;0cos(al)-sin(al) 0; 0sin(al) cos(al)0;0 0 0 1]
tOltransz=[1 0 0 0;01 0 0;00 1 s1;0 O O 1]
t0lrotz = [cos(ql) -sin(gl) O O;sin(gl) cos(ql)00;0 0 1 0;0001]
TO01=tO1transx*tOlrotx*t01ltransz*t01lrotz

After that °T, were found according to defined matrices as:
Toa =Toy * Ty % Toz * Ty (2.1)

Finally plot command of position points were entered which are x, y and z. “’hold on”’

command was used since there is more than one value in the chart.

x=T04(1,4) y=T04(2,4) z=T04(3,4) scatter3(x,y,z)  hold on

12



This command were executed many times and workspace is calculated.

@ F
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Figure 2.5 Workspace Analysis Result

The SolidWorks design was transferred to the matlab simulation for checking positions

of the robot arm with respect to the changement of angle values of linkages. Simple

sections of the simulation model of our robot arm are shown.

Figure 2.6 Section from the Matlab Simulation
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After the simulation of the model has started robotic design can be seen in the Matlab.
Then the control model were handled for linkage joint angels.

1 » 90

Cpactant3 Slider N & |
1 Gai

Joint Actuator1

Constant4

8]
|
P

1 ! [ '
Le High

150 90 180

Constant5

Figure 2.7 Slider Gain for Preparing Angle Value of the Link

Angle value of the linkage can be controlled by changing the slider gain.

Figure 2.9 30 Degree Slider Gain of Robot Link
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2.2.2 Forward Kinematics (Direct Task)

In forward kinematics, the length of each link and the angle of each joint is given and
I have to calculate the position of any point in the work volume of the robot.

Direct kinematics involves solving the forward transformation equation to find the

location of the hand in terms of the angles and displacements between the links.

Denavit-Hartenberg (DH) method uses the four parameters including ai-1,i,ai-1,i, Si and
0i, which are the link length, link twist, link offset and joint angle, respectively.
Transformation matrices will be used as a method for making our direct task.
Transformation matrices are initially created as Tix, Trx, Ttz, Trz. These transformation
matrices should be created with their individual models. These models are shown

below.

Transformation matrices of x axes:

10 0 apq, 1 0 0 0
To = 0 1 0 0 T = 0 Cos(aj1) —Sin(aii) O
1o 01 o "\ 0 Sin(ai.i;) Cos(aigy) O
0 0 O 1 0 0 0 1
Transformation matrices of z axes:
100 0 Cos(Q;) —Sin(Q) 0 0
T=[0 100 | Sin(@)  Cos(@) 0 0
“lo 0 1 s ” 0 0 1 0
0 0 0 1 0 0 0 1
For finding ~1T; matrix:
i_lTi:i_lTitX i_lTirX i_lTitZi_lTiI’Z (21)

First transformation matrices need to be defined, °T; and then °T;matrix will be

evaluated.
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1 0 0 O 1 0 0 O
0 (0 1 0 O 0 (0 1 0 O
=1y 0 1 0 Tin={ g 0 1 0
0 0 0 1 0 0 0 1
1 0 0 O 0.76402128 0.64519103 0 O
op = 0 1 0 0O op -0.6451910 0.76402128 0 O
"0 0 1 76 1rz 0 0 1 0
0O 0 0 1 0 0 0 1
0T, = Ty °Tyrx °Tytz °Tyrz this matrix will be: (2.2)
0.764021 0.645191 0 O
o — -0.64519 0.764021 0 O
1 0 0 1 76
0 0 0 1
Then T, matrix will be evaluated by using Eq 2.1 with same procedures.
1 0 0 O 1 0 0 O
1 (0 1 0 O 1 10 0 -1 0
=g 0 1 0 =g 1 0 0
0 0 0 1 0O 0 0 1
1000 0.47991728 -0.8773137 0 0
ir = 01 0 O ip - 0.8773137 0.47991728 0 O
2271 0 1 0 2z 0 0 1 0
0 0 0 1 0 0 0 1
1 —_ 1 * 1 * 1 * 1 H H H .
TZ - thx Tzrx thz Tzrz thIS matI‘IX Wl” be (23)
0.479917 -0.87731 0 O
T 0 0 -1 0
2 0.877314 0.479917 0 O
0 0 0 1
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After T3 matrix will be evaluated by using Eq 2.1 with same procedures.

1 0 0 137 1000
2n [0 1 0 0 2w [0 1 0 0
Tso=1g 0 1 0 =l 0 1 0
000 1 00 0 1
10 00 0.0287939 0.9995853 0 0
2p. [0 1 00 2p. o[ -0.9995853 0.0287939 0 0
37 o 0 1 0 312 0 0 1 0
00 0 1 0 0 0 1
2T = 2Ty * 2Taix * 2Tt * 2T3r, this matrix will be: (2.4)
0.028794 0.999585 0 137
2p. - [ -0.99959 0.028794 0 0
3 0 0 1 0
0 0 0 1

After that 3T, matrix will be evaluated by using Eq 2.1 with same procedures.

1 0 0 100 1 0 00
3. _[0 1 0 0 3» _[(0 0 1 0
Tw=lo 0 1 o To=lo -1 0 o0
000 1 0 0 0 1
1 000 1 000
3. _[0 1 0 0 3. [0 1 0 0
Tae=o 0 1 0 Tae=lo 0 1 o0
00 0 1 00 0 1
3Ty = 3T * 3Ty * 3T 410 * 3T 412 this matrix will be: (2.5)
1 0 0 100
3. _[0 0 1 0
Ta=lo 4 0 o
0 0 0 1
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Finally, the position values will be evaluated by using same equation with others.

O, = O7,* 1T,* 274> 3T, this matrix will be:

(2.6)

0.680566 0.645191 0.347215 118,29

-0.57472 0.764021 -0.29321 -99.892

-0.45446 0 0.890769 150.7463
0 0 0 1

or, =

Evaluation of matrix is done that will give the position vectors of the end effector. This

matrix called as final transformation matrix it is shown in Fig. 3

r, I, Ty | (B
3x3 rotation matrix = 1, ¢ r, | Ay 3xl translation
r, Iy I, | Az

1x3 perspective (0 0 0 1\ global scale

Figure 2.10 Model of transformation matrix

So the robot arm positions will be:

X =118.29 mm y =-99.89 mm z =150.74mm

It was checked in the SolidWorks with initial design of the robot.

Figure 2.11 Position analysis in SolidWorks with conceptual design
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When the desired position values, defined using SolidWorks measurements, were
checked and the position values obtained through direct task evaluation using the
transformation matrices method were evaluated, it was observed that the position

values were identical. Thus, the direct task was successfully performed.

In summarize, the desired angles of the robotic arm must be entered into SolidWorks
in order to determine position values. The SolidWorks position vectors should then be
checked. The next step is to carry out the direct task using the transformation matrices
approach, which calls for an understanding of the robotic arm's Denavit-Hartenberg

(DH) characteristics. Comparison between the two sets of position values is necessary.

Microsoft Excel macro has created to perform those procedures.

TnEmy
I
I
i

4; T

=
T

_!_':"‘“"‘} E —
-
e s | o

; [T

Figure 2.12 Transformation matrices method in Microsoft Excel

104

0.15448| 0.64519| -0.74824| 118.147
-0.13045| 0.76402| 0.63187|-99.7715
0.97935| -9.8E-17| 0.20219| 150.197

0 0 0 1

Figure 2.13 Transformation matrix of final position of the robotic arm

After all of those calculations are completed in the mathematic tool and Microsoft
Excel, C# tool has been developed and forward kinematics has implemented into it.
Thanks to the tool there is no need to define any other equation or use any external

item to calculate robot position and control it with the inverse kinematics.

All matrices are defined in the tool, and each formulations for forward kinematics

was followed with dynamic parameters. ForwardKinematics function were
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developed for this purpose, a part of the code snippet for matrix multiplication and
matrix declaration and Ul of the tool with forward kinematics can be seen below.

try

int rowA = firstMatrix.GetLength(1);
int columnA = firstMatrix.GetLength(0);
int rowB = secondMatrix.GetLength(1l);
int columnB = secondMatrix.GetLength(0);
double temp = 0;
double[,] finalMatrix = new double[rowA, columnB];
for (int i = 0; i < rowA; i++)
{
for (int j = 0; j < columnB; j++)
{
temp = 0;
for (int k = 0; k < columnA; Kk++)
{

}
finalMatrix[i, j] = temp;

temp += A[i, k]l = B[k, jl;

}

return finalMatrix;

}

catch(Exception ex)

MessageBox.Show(ex.Message.ToString());
double[,] nullMatrice = new double[0,1];
return nullMatrice;

double[,] translationXZeroOne = new double[d, 4];
translationXZeroOne[0, 0] = 1;

translationXZeroOne[3, 3] = 1;

double[,] rotationXZeroOne = translationXZeroOne;
double[,] translationZZeroOne = new double[d, 4];
translationZZeroOne[0, 0] = 1;

translationZZeroOne[3, 3] = 1;

double[,] rotationZZeroOne = new double[d, u4];
rotationZZeroOne[0®, 0] = Math.Cos(Math.PI *» firstAngle / 180.0);

rotationZZeroOne[3, 3] = 1;

double[,] firstResult = MultiplyMatrix(translationXZeroOne,
rotationXZeroOne);

double[,] secondResult = MultiplyMatrix(firstResult,
translationZZeroOne);

double[,] finalResultTZeroOne = MultiplyMatrix(secondResult,
rotationZZeroOne);
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Start Connection | Offline HMDhiIeUrigin
Robot Control  Robat Info
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Figure 2.14 Forward & Inverse Kinematics Calculation

2.2.3 Inverse Kinematics

Inverse kinematics is the opposite of forward kinematics. In inverse kinematics, the
length of each link and position of the point in work volume is given and the angle of

each joint has to be calculated.

Inverse kinematics involves solving the inverse transformation equation to find the
relationships between the links of the manipulator from the location of the hand in
space. This is when you have a desired end effector position, but need to know the
joint angles required to achieve it the inverse position kinematics solves the following
problem: end effector pose, what are the corresponding joint positions?" In contrast
to the forward problem, the solution of the inverse problem is not always unique: the
same end effector pose can be reached in several configurations, correspond position

vectors.

Inverse kinematics is done in modern technical computing program. This program is

used since it gives possibility to make matrix computing with parametric values.
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Equations are started to use by defining the matrices of °T; as :

10 00 10 0 0
0 0100 01 00
T . = L
=10 0 1 0 I™™10 0 1 0
0 0 0 1 0 0 0 1
10 0 0
o7 _[(0 10 0
1z 0 0 1 76
0 0 0 1
Cos[Q1] —Sin[Q1] 0 O
op  _|[Sin[Q1] Cos[Q1] 0 0
1 rz —
0 0 1 0
0 0 0 1
0T1 = 0T1tx* 0T1rx* OT1tz* 0T1rz

@2.7)

Cos[Q1] -=Sin[Q1] O
op — [ Sin[Q1] Cos[Ql] 0 0
! 0 0 1
0 0 0
As shown in above all of the rest matrices ( °Ty, T,, 2T3, 3T,) can be found with

same formula. °T, should be found with below formula.

°Ty= T T, °Ty °T,
(2.8)

Whenever all matrices are found, left side of the equation should be found by

multiplying inverse of the °T;.

Tuer= Inverse[ °T;] °T, (2.9)
XXCos[Q1] + XYSin[Q1] YXCos[Q1] + YYSin[Q1] ZXCos[Q1]+ ZYSin[Q1] PXCos[Q1] + PYSin[Q1]
Eqy, = | XYCoslQ1] — XXSin[Q1] YYCos[Q1] - YXSin[Q1] ZYCos[Q1] - ZXSin[Q1] PYCos[Q1] - PXSin[Q1]
! Xz YZ 7z —76 + PZ
0 0 0 1

Then the right side of the equation should be calculated without multiplying matrix

because it was multiplied by left side of the equation with inverse of this matrix. So, it
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will be simplified in right side if it is multiplied with inverse of it because when it was

multiplied inverse matrix of and matrix, unit matrix will be calculated.

Tlright: 1T2 2T3 3T4

(2.10)

Sin[Q4] Cos[Q4] 0 0
Cos[Q4] Sin[Q2 + Q3] —Sin[Q2 + Q3] Sin[Q4] Cos[Q2 + Q3]  137Sin[Q2] + 100Sin[Q2 + Q3]
1

Cos[Q2 + Q3] Cos[Q4] —Cos[Q2 + Q3] Sin[Q4] —Sin[Q2 + Q3] 137Cos[Q2] + 100Cos[Q2 + Q3]
Eqn’ght = ( )
0 0 0

After both sides of the equation is calculated, parameters should be found and then Q1

can be easily calculated.

3" column and 2" row from Fig.10 (Simplified version of left side of our equation)

and 3™ column and 2" row again was taken as easiest equalities to start with.
This equation can be shown below.
PYCos[Q1] — PXSin[Q1] = 0 (2.11)

PY and PX values can be found from Microsoft Excel table because that table

represents parametrical values of Tos matrix.
PY =-99 PX=118

Then Q1 can be calculated from this equation easily for solving this equation ‘Solve’

command in mathematica will be used as shown below.
Solve[—99Co0s[Q1] — 118Sin[Q1] == 0, Q1] (2.12)
Q1 will be resulted in the mathematica as shown below.
01 = —ArcTan (%) = —0.70127 (2.13)

Q2 and Q3 values were calculated with 2 equations by 2 unknowns so below equations

were selected.

—76 +150.31 = (136.5 + 100 Cos[Q3])Sin[Q2] + 100 Cos[Q2]Sin[Q3] (2.14)
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—0.37227 = Cos[Q3]Sin[Q2] + Cos[Q2]Sin[Q3] (2.15)

With the “Solve” command of the tool by using already founded Q1, Q2 and Q3 are
calculated.

Q2 =1.07024 Q3 = —1.542

For calculating Q4, T, should be found with left and right equations, it was handled

as same with above and Q4 was calculated as 0.

In addition to the ForwardKinematics function, InverseKinematics function has been
also developed to handle inverse kinematics automatically and run servo motors
accordingly. Desired robot positions can be entered to the textboxes of the tool where
the end-effector should go, and joint angles will be calculated automatically, with the
“Run Robot” button it can be controlled. A part of the code snippet can be seen below
and Ul can be checked from the Figure 2.14.

double firstAngleCalculation =
(double)Double.Parse(txtPosY.Text)/Double.Parse(txtPosX.Text);
double firstAngleCalculated = Math.Atan(firstAngleCalculation);

firstJoint.Text = ((180 / Math.PI) * firstAngleCalculated).ToString();

MathKernel mathKernel = new MathKernel();

var firstAngleToVar = firstAngleCalculated.ToString().Replace(',', '.');
var solveEquation = "Solve["+txtPosX.Text+"Cos["+ firstAngleToVar + "] +
"+ txtPosY.Text + "Sin["+ firstAngleToVar + "] == 137 Cos[Q2] + 100
Cos[Q2] Cos[Q3] - 100 Sin[Q2] Sin[Q3] && -76 + " + txtPosZ.Text+" ==
(136.5 + 100 Cos[Q3]1) Sin[Q2] + 100 Cos[Q2] Sin[Q3] , {Q2 , Q3}1";
mathKernel.Compute(solveEquation);

string angleTwoPattern = @"Q2\s?\-\>\s?(.*?),";
string angleThreePattern = @"Q3\s?\-\>\s?(.*?)}";
string input = mathKernel.Result.ToString();
RegexOptions options = RegexOptions.Multiline;
var qTwoRadian = "";

var qTwoRadianCheck = "";

var counterCheck = 0;

var qThreeRadian ;

foreach (Match m in Regex.Matches(input, angleTwoPattern, options))
{

gTwoRadianCheck = m.Groups[1].Value;

if (!qTwoRadianCheck.Contains("I"))

{

gTwoRadian = m.Groups[1].Value;

gThreeRadian = Regex.Matches(input, angleThreePattern,
options)[counterCheck].Groups[1].Value;

break;

}

counterCheck++;
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}

double secondAnleCalculated = double.Parse(qTwoRadian,
CultureInfo.InvariantCulture);

double thirdAnleCalculated = double.Parse(qThreeRadian,
CultureInfo.InvariantCulture);

secondJoint.Text = ((180 / Math.PI) * secondAnleCalculated).ToString();
thirdJoint.Text = ((180 / Math.PI) * thirdAnleCalculated).ToString();

mathKernel.Dispose();

In summarize, both forward and inverse kinematics have been automatized and
calculated in the C# WinForm tool which was developed for this thesis. It was
investigated that those processes can be automatized and controlled, and combine with
the MQTT protocol opportunities for controlling remotely within even different

network and task automatization.
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3 Jacobian and Dynamic Analysis of
the Robot

3.1 Jacobian Analysis

It is used when linkage is complicated. The joint angles change to approach the goal
position and orientation. Jacobian matrices are a super useful tool, and heavily used
throughout robotics and control theory. Basically, a Jacobian defines the dynamic
relationship between two different representations of a system. For example, if | have
a 2-link robotic arm, there are two obvious ways to describe its current position: 1- the
end-effector position and orientation which | will denote x, and 2- as the set of joint
angles which I will denote g. The Jacobian for this system relates how movement of
the elements of g causes movement of the elements of x. Jacobian can be thought as a
transform matrix for velocity. Formally, a Jacobian is a set of partial differential

equations:

x=]J.q (3.1)

where x and grepresent the time derivatives of x and g. This tells that the end-effector

velocity is equal to the Jacobian, J, multiplied by the joint angle velocity.
3.1.1.1 Building the Jacobian

First, the relationship between the position of the end-effector and the robot’s joint
angles should be defined. Distances are known from the shoulder to the elbow, and
elbow to the wrist, as well as the joint angles, where the end-effector is relative to a
base coordinate frame should be figured out. Those forward transformation matrices

should be used.

That transformation matrices allow a given point to be transformed between different
reference frames. In this case, the position of the end-effector relative to the second
joint of the robot arm is known, but where it is relative to the base reference frame (the
first joint reference frame in this case) is of interest. So, the rotation part of this matrix

is straight-forward to define can be shown as.
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a b c
ORi_l = (d e f)
g h i

The translation part of the transformation matrices is a little different than before
because reference frame 1 changes as a function of the angle of the previous joint’s
angles. From trigonometry, given a vector of length r and an angle q the x position of
the end point is defined r.cos(q), and the y position is r.sin(q). And the z position of

the end point is defined with offset of our robotic arm. It can be shown below.

' a;-1,;Cos(Q1)
= aog,Sin(QD)
Si

Then zi.1 is a unit vector along “i’n joint axis, and " p_"is a vector defined from the

n

origin of the (i-1)w link frame.

0
Ziai= "R, (0) (3.2)
1

i-1 *

P, =RL"m+'p,” (3.3)

Before these formulas are applied, a new Denavit-Hartenberg (DH) table should be

created for finding same positions where it was found in direct task before.

O'H TABLE
i g a 5 (8]
1 0 pif2 76 01
2 223 0 0 02
3 234 3pif2 0 03
4 L] 0 LH 04

Figure 3.1 DH table for Jacobian Analysis

A it wi i * i * 1T (EqL 1) formulation was used at this procedure

but now with respect to the new Denavit-Hartenberg table.
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i_lTi:i_lTitz*i_lTirz*i_lTitx *i_lTirx formUIation ShOUId be USEd Wlth respect tO thIS

formulation.
0T, = Ty °Tyrz °Tyx Oy this matrix will be: (3.4)
Cos(Q1) O Sin(Q1) O
or — Sin(Q1) 0 -Cos(Q1) O
1 0 1 0 76
0 0 0 1
1 - 1 * 1 * 1 * 1 H H H .
T, = "Tyu* "Tyrz ™ Ty * “Torx this matrix will be: (3.5
Cos(Q2) -Sin(Q2) 0 137 Cos(Q2)
ir = Sin(Q2) Cos(Q2) 0 137 Sin(Q2)
2 0 0 1 0
0 0 0 1
2T3 = 2T3tz * 2T3rz * 2T3tx * 2T3rx thIS matriX W|” be: (36)
Cos(Q3) -Sin(Q3) 0 100 Cos(Q3)
27, = Sin(Q3) Cos(Q3) 0 100Sin(Q3)
3 0 0 1 0
0 0 0 1
3T4, = 3T4,tz * 3T4rz* 3T4tx * 3T4,rx thIS matriX Wl” be: (37)
1 0 0 O
3 {0 1 0 O
Ta=lo 0 1 0
0 0 0 1

28



Or, = °T, T, 2T; 3T, this matrix will be: (3.8)

0.680566 0.645191 0.347215 118.29

-0.57472 0.764021 -0.29321 -99.892

-0.45446 0 0.890769 150.7463
0 0 0 1

0T4:

So, it can be easily seen that our final transformation matrix is the same which was
found in direct task analysis. This shows that the new Denavit-Hartenberg table was

created correctly, and proper equations was applied.

After finishing procedures of the new method of Denavit-Hartenberg solution

i=1R,matrices can be found. That matrices are the rotation matrix part of °T;'T, 2T

and 3T,
Cos[Q1] 0 Sin[Q1]
OR,= ( Sin[Q1] 0 -COS[Ql])
0 1 0
0 0 0]
For Re and0R3 matrices T, and Ts matrices should be found. Because °R, and0R3

0 0]
will be rotation matrices of T, and T3 matrices. Those matrices can be found as same

0T4

what was done for "4. One example can be seen on below.

Rotation matrices will be found as shown on below.

Cos(Q1) Cos(Q2) -Cos(Q1)Sin(Q2)  Sin(Q1)
°R,=| Cos(Q2)Sin(Q1) -Sin(Q1)Sin(Q2) -Cos(Q1)
Sin(Q2) Cos(Q2) 0

Cos(Q1) Cos(Q2 + Q3)  -Sin(Q1) -Cos(Q1) Sin(Q2 + Q3)
OR,=| Cos(Q2+Q3)Sin(Q1) Cos(Q1) -Sin(Q1)Sin(Q2 + Q3)
Sin(Q2 + Q3) 0 Cos(Q2 + Q3)
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i-1
f variables should be also defined.

0 137Cos[Q2] 100Cos[Q3] 0
[‘01 = (O ) r12 = (137Sin[Q2]> r12 = (1005in[Q3]> F34. = <0>
76 0 0 0
After finding those matrices below equation should be used.
i1, * 0 . PN
P, = Ri—l l_lri + Py (39)

There should be started with giving i=4 and n always equal to 4 so the first formulation.

3

JU A A (3.10)
4 * A 3 *
Here P« =0  3r,=0s0 it can be measured that P+ =0.
-
After finding P+ matrix it should be given as i = 3 and 2 p,~ will be found.
“pe =Ry 2ry + Py (3.11)

3 *
Here Ps =0and ?r; and °R, are also known as:

Cos(Q1) Cos(Q2) -Cos(Q1)Sin(Q2)  Sin(Q1)
°R, _| Cos(Q2)Sin(Q1) -Sin(Q1)Sin(Q2) -Cos(Q1)
Sin(Q2) Cos(Q2) 0

After multiplying %r5 and °Rs, “Pa” can be found as:
/100 Cos[Q1] Cos[Q2 + Q3]

P = 100 Cos[Q2 + Q3] Sin[Q1]
100 Sin[Q2 + Q3]
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p. " _ "R, i-1 "p,” . . . - 1

n o= i1+ Fno formulation will be applied for finding “p, by
giving i=2:
lp4* = 0Rl 17'2 + 2p4* (312)

_ [Cos[Q1](137 Cos[Q2] + 100 Cos[Q2 + Q3])
Ps = (137 Cos[Q2] + 100 Cos[Q2 + Q3]) Sin[Q1]
137 Sin [Q2] + 100 Sin[Q2 + Q3]

1

1 *
With respect to the formulation if i=1 is given P+ = °p,” So °p,” will be as same.

After finding all "'p_~ values as a vector defined from the origin of the (i-1)n link

n

frame zi.1 should be found which is a unit vector along ‘i’w joint axis.

-y

0 Sin[Q1]

Z, = Ro1.(o> = (—COS[QI]) (3.13)
1 0
0 Sin[Q1]

Z, = RO2. (0) = (—Cos[Ql]) (3.14)
1 0

7y = 0)= [ =Sin[Q1] Sin[Q2 + 03] (3.15)

0 —Cos[Q1] Sin[Q2 + Q3]
ROB.( )
1 Cos[Q2 + 03]

All these desired matrices for building the final version of Jacobian matrix is defined
and calculated. Those needs to be built up as shown below:

J= [Jl,Jz,J3,34]

Those J1,J2,J3,J4 matrices can be written individually by using the below model.
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Z, X’ .
Ji:[ "lz “} for revolute joint

i-1
Cross products will be handled and Jacobian matrices will be found as shown below.

-(137 Cos(Q2) + 100 Cos(Q2 + Q3)) Sin(Q1)
Cos(Q1) (137 Cos(Q2) + 100 Cos(Q2 + Q3))

0
Ji=
' 0
0
1

-Cos(Q1) (137 Sin(Q2) + 100 Sin(Q2 + Q3))
-Sin(Q1) (137 Sin(Q2) + 100 Sin(Q2 + Q3))
137 Cos(Q2) + 100 Cos(Q2 + Q3)
Sin(Q1)

-Cos(Q1)

0

Jo=

-100 Cos(Q1) Sin(Q2 + Q3)
-100 Sin(Q1) Sin(Q2 + Q3)
100 Cos(Q2 + Q3)
Sin(Q1)

-Cos(Q1)

0

-(137 Cos(Q2) + 100 Cos(Q2 + Q3)) Sin(Q1)
Cos(Q1) (137 Cos(Q2) + 100 Cos(Q2 + Q3))
0
-Cos (Q1) Sin(Q2 + Q3)

-Sin(Q1) Sin(Q2 + Q3)

Cos(Q2 +Q3)

Ja=

3.2 Dynamic Analysis

In a dynamic model of a system there are two main aspects with which one is
concerned: motion and forces. The motion of a system is called its trajectory and
consists of a sequence of desired positions, velocities, and accelerations of some point
or points in the system. Forces are usually characterized as internal (or constraint)
forces and external (or applied) forces. The external forces are the ones which cause
motion. In robotics, a dynamic robot model usually describes relationships between
robot motion and forces causing that motion, so that given one of these quantities,

other one can be determined.
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There are, therefore, the following problems to be considered forward Dynamics and
inverse Dynamics. In principle, solving forward or inverse dynamics for rigid-link

robot manipulators presents no difficulty.

A robot manipulator is just a system of rigid bodies, and the equations of motion of
such systems have been known for a long time. The real problem in robot dynamics is
a practical one, namely, that of finding formulations for the equations of motion that
lead to efficient computational algorithms. To derive these equations, | can use well
established procedures from classical mechanics such as those based on the equations

of Newton and Euler, Euler and Lagrange, Kane, etc.

The Newton and Euler method will be used to solve dynamic analysis [5].
3.2.1 Forward Dynamic Analysis

The Forward or direct dynamics problem is one where the forces which act on a robot
are given and the resulting motion will be solved. The importance of forward dynamics
in robotics stems mainly from its use in simulation. Simulation of robot motion is a
way of testing control strategies or manipulator designs prior to the expensive task of

working with the actual manipulator.

First, | started to compute angular velocity, angular acceleration, linear velocity, and
linear acceleration of each link in terms of its preceding link. These velocities can be
computed as starting at the first moving link and ending at end-effector link.

a) Angular Velocity Propagation

Due to serial construction of the manipulator, the angular velocity of link i relative to

link i-1 is equal to zHQifor revolute joint, where zi.; denotes a unit vector pointing
along the ith joint axes. Angular velocity of i link can be written as

0= W1+ 2i1Q; (3.16)

o

Cos[Q1] 0 Sin[Q1]
R01 = <Sln[Q1] 0 _COS[Ql])
0 1 0
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0
Z1 = R01 <O> (317)
1

After finding all of the Z;.1 matrices, below formula should be applied.
wj = Zi—l Qid (318)

This will be applied from i=0 to i=4, after all of those are found it should be expressed

in the i, link frame with the below formula.
'wi= Ry (Tlwgt HZHQ‘i) (3.19)

First ‘R;_, should be defined Then “~z;_, will be called as Zm. Angular velocities

of i link frame will found as:

Cos[Q4] Sin[Q4] O
R34n=<—5in[Q4] Cos[Q4] 0)

0 0 1
0
Znn = <O
1

w1l = R01n. (Znn Qd1)
w22 = R12n. (w11 + Znn Qd2)

b) Angular Acceleration Propagation

That will be link i is obtained by using the below equation.

0= W1+ 210+ wi_q X Zi.l(él- (3.20)
w; Will be defined as Wd1 in mathematic tool. Below will be calculated.

wdl = Z0Qdd1

71Qd2 = Z1Qd2

wd2 = wdl + Z1.Qdd2 + Cross [wd1,Z1Qd2]

Then this should be expressed in the i link frame.

0= Ry (Tloi_q+ 7aQi+ Tlwi_g X i_lzi—léi) (3.21)
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wd11l = R01n. (ZnnQdd1)

wd22 = R12n.(wd11 + Znn Qdd2 + Cross [w11, Znn Qd2])

wdll, wd22, wd33 and wd44 angular acceleration were found as same as above.
c) Linear Velocity Propagation

It needs to be considered as if the it joint is a revolute joint, link i does not translate
along the iw joint axis. Then the velocity can be written as:

Vi = Vi—l + w; Xn; (322)

First, r; should be defined to for the Eq 3.22:

al2 Cos[Q2] a23 Cos[Q3]
r2 = (a12 Sin[QZ]) r3 = <a23 Sin[Q3]>
0 0

Then linear velocity can be found by using Eg. 3.22 which can be shown as below:
V1 = Cross[wl,rl]
V2 =V1+ Cross [w2, r2] same formula for the V3 and V4.

Then those again need to be expressed in the iw link frame as it was done before for

angular velocity and angular acceleration. This expression will be shown as:
V, = Riq (Wit lox ') (3.23)

'r; is defined as rii in mathematic tool for finding rii constant vector for a revolute joint.

These will be found as:

a;
'y = (SiSinaz> (3.24)

S;Cosa;

Each of them was found parametrically and Eq 3.23 was applied for linear velocity in
link.

0 al2 a23 0
rll1 =151 rll1={ 0 r33 = 0 44 =10
0 0 0 0
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V11 = Cross [wll,r11]

V22 = R12n.V11 + Cross[w22,r22] same formula for the V3 and V4.

d) Linear Acceleration Propagation

Linear acceleration of the frame i can be obtained by differentiating Eq3.24 with
respect to time. It will be shown as:

ViZVi._l‘}'(l..)iX r; t+ (A)iX( w; X Ti)
(3.25)

w2r2 = Cross|w2,r2]

Vd2 = Cross[wd2,72] + Cross[w2, w2r2]

w3r3 = Cross [w3,73]

Vd3 = Vd2 + Cross[wd3,r3] + Cross[w3, w3r3]
w3r3 = Cross|w4,14]

Vd4 will be equal to VVd3 since w3r3 was found as 0.

These need to expressed i link frame as same before for the angular velocity and

angular acceleration. This expression will be shown as:

".Vi =R, i_ll./i_1+ i;ui X ‘ri+ twx (Clw;x ') (3.26)
Vd22 = Cross|wd22,r22] + Cross[w22, w22r22]

w3r33 = Cross[w33,133]

Vd33 = R23n.Vd22 + Cross[wd33,733] + Cross[w33, w33r33]

e) Linear Acceleration of the Center of Mass
Vi = Wt fwx g+ twpx (fwi X try) (3.27)
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First, ira-, position vector of the center of mass of the link with i link frame is shown:

, CosQ;
lT'Cl' = —a,-/Z (Sl.an)
0

Then, Eq 3.27 will be applied as shown below.

w22c22 = Cross[w22,rc22]

Vdc22 = Cross|wd22,rc22] + Cross|w22, w22rc22]

W33r33 = Cross[w33,rc33]

Vdc33 = Vdc22 + Cross|wd33,7¢33] + Cross[w33, w33rc33]
Since the w44rc44 equals to zero, Vdc44 will be as same with Vdc33.
f) Acceleration of the Gravity

As a final, the acceleration of gravity is transformed from the (i-1) link frame to the it

in frame as:
'g=ip i1 3.28
-1 g ( )
0
gl = ROln.(O)
g
g2 = Rl2n.g1

g3 and g4 will be found with the same formula as above.
3.2.2 Backward Dynamic Analysis

When the velocities and accelerations of the links are found, the joint forces can be
computed at a time starting from the end-effector link and ending at the base link.

First inertia force exerted at the center of mass link i should be computed as:

‘fr=m; + Va (3.29)
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fs1ll = —m1Vdcl1l
fs22 = —m2dc22

Inertia forces of the fs11, fs22, fs33 and fs44 will be found as same shown above.
After finding inertia forces of each i link. System should be solved recursively,
starting from the end-effector link. For the end-effector link, represent the end-

effector output force. This output force is considered and defined as below:

0
£045 = ( 0 )
—mg

After defining the output force, recursive function equation should be defined.
foicr= e M g (3.30)

When the reaction forces are computed in the iw link frame, these are converted into

the (i-1)w link by following transformations:
o= TR i (3.31)

As a result of the definition of the all these computing steps it should be started by

finding an external output force of end-effector as:
f445 = RO04.f045
f454 = —f445

Finally, all of those should be calculated recursively, finding joint forces can be shown

as.
m4g4 = m4 g4
f443 = f454 - m4g4 - fs44

£343 = R34.[443
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Same formulas should be applied until the 110 joint force, and then, as same
processes should be implemented for the inertia moment exerted at the center of the

mass of the link i:
i =1t o (1 ) (3.32)
For finding inertia moment of the system inertia matrix of link i about its center of

mass coordinate frame should be defined as:

_ 0 00
‘Ti=ma?l12({0 1 0 (3.33)
0 0 1

By using the Eq. 3.22 inertia moments of center of mass of link i can be calculated.
nsll = —Cross[wll,/11w11]

122w22 = 122. w22

122wd22 = 122.wd22

ns22 = —I22.wd22 - Cross[w22,122w22]

[33w33 = 133. w33

The rest of the inertia moments will be found parametrically as same on above.

After finding the inertia moment of each i link. System should be resolved recursively,
starting from the end-effector link. For the end-effector link, "nm,i represent the end-

effector output force. This output moment is considered as 0.
Myio1= Mt (et ) x s T X i g (3.34)

When the reaction moments are computed in the iw link frame, these are converted into

the (i-1)w link by following transformations:

"= TR My (3.35)
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Finally, it can easily computed by keeping going these procedures.

n443

Cross|[rd4rc44, f443] - Cross[rc44, f454] — ns44
n343 = R34.n443
n332 = n343 + Cross[r33rc33, f332] - Cross[rc33, f343] - ns33

Joint moments have been calculated as same with the formulas and followings shown

in above until the n010.
3.2.3 Determination of the Torques of the Motors

Actuator torques or forces T;, are obtained by projecting the forces of constraint onto

their corresponding joint axes, that can be shown as:
T,= "'l "z, (3.36)

First torque values should be calculated parametrically. Then unknown values can be

entered by using the design values.

T1 = {-Sin[Q2]Sin[Q3](— a12a23m3Qdd2 — >a12a23m4Qdd2 —
~a23?m3Qdd1Cos[Q2]Cos[Q3] — 5a232m4Qdd1Cos[Q2]Cos[Q3] —
~a12a23m3Qd12Cos[Q2]Sin[Q2] — 5 a12a23m4Qd12Cos[Q2]Sin[Q2] +
~ 223?m3Qd1Qd2Cos[Q3]Sin[Q2] + a23?m4Qd1Qd2Cos[Q3]Sin[Q2] +
~ 223?m3Qd1Qd3Cos[Q3]Sin[Q2] + a232m4Qd1Qd3Cos[Q3]Sin[Q2] +
~ 223?m3Qd1Qd2Cos[Q2]Sin[Q3] + a23?m4Qd1Qd2Cos[Q2]Sin[Q3] +
~ 223?m3Qd1Qd3Cos[Q2]Sin[Q3] + a23?m4Qd1Qd3Cos[Q2]Sin[Q3] +
~a232m3Qdd18in[Q2]Sin[Q3] + >a23?m4Qdd1Sin[Q2]Sin[Q3] +
—a23?m3(Cos[Q3](Qdd1Cos[Q2] — Qd1Qd2Sin[Q2] — Qd1Qd3Sin[Q2]) —
(Qd1Qd2Cos[Q2] + Qd1Qd3Cos[Q2] + Qdd1Sin[Q2])Sin[Q3]) —

a23gmsSin[Q1]Sin[Q2 + Q3] + a23gm4Cos[Q3]Sin[Q2]Sin[Q4] +
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a23gm4Cos[Q2]Sin[Q3]Sin[Q4]) + Cos[QZ](—%a122m3Qdd2 -
~a12?m4Qdd2 — ;a122m2Qdd1Cos[Q2] — >a12a23m3Qdd1Cos[Q2]Cos[Q3] —
~a12a23m4Qdd1Cos[Q2]Cos[Q3] + —a12?m2Qd1Qd2Sin[Q2] -
~a12?m3Qd12Cos[Q2]Sin[Q2] — 5 a122m4Qd12Cos[Q2]Sin[Q2] +

al12a23m3Qd1Qd2Cos[Q3]Sin[Q2] + a12a23m4Qd1Qd2Cos[Q3]Sin[Q2] +
al12a23m3Qd1Qd3Cos[Q3]Sin[Q2] + a12a23m4Qd1Qd3Cos[Q3]Sin[Q2] +

—a12?m2(Qdd1Cos[Q2] — Qd1Qd2Sin[Q2]) +

al12a23m3Qd1Qd2Cos[Q2]Sin[Q3] + a12a23m4Qd1Qd2Cos[Q2]Sin[Q3] +
al12a23m3Qd1Qd3Cos[Q2]Sin[Q3] + a12a23m4Qd1Qd3Cos[Q2]Sin[Q3] +

~a12a23m3Qdd1Sin[Q2]Sin[Q3] + a12a23m4Qdd1Sin[Q2]Sin[Q3] —
a12gmSin[Q1]Sin[Q2 + Q3] + a12gm4Cos[Q3]Sin[Q2]Sin[Q4] +
a12gm4Cos[Q2]Sin[Q3]Sin[Q4] + Cos[Q3](—a12a23m3Qdd2 —
~a12a23m4Qdd2 — ;a23?m3Qdd1Cos[Q2]Cos[Q3] -
~a23?m4Qdd1Cos[Q2]Cos[Q3] — ;a12a23m3Qd12Cos[Q2]Sin[Q2] —
~a12a23m4Qd12Cos[Q2]Sin[Q2] + —a23?m3Qd1Qd2Cos[Q3]Sin[Q2] +
a23?m4Qd1Qd2Cos[Q3]Sin[Q2] + —a23?m3Qd1Qd3Cos[Q3]Sin[Q2] +
a23?m4Qd1Qd3Cos[Q3]Sin[Q2] + —a23?m3Qd1Qd2Cos[Q2]Sin[Q3] +
a23?m4Qd1Qd2Cos[Q2]Sin[Q3] + 5 a23?m3Qd1Qd3Cos[Q2]Sin[Q3] +
a23?m4Qd1Qd3Cos[Q2]Sin[Q3] + ;a23?m3Qdd1Sin[Q2]Sin[Q3] +
~a23?m4Qdd1Sin[Q2]Sin[Q3] + --a23?m3(Cos[Q3](Qdd1Cos[Q2] —

Qd1Qd2Sin[Q2] — Qd1Qd3Sin[Q2]) — (Qd1Qd2Cos[Q2] + Qd1Qd3Cos[Q2] +
Qdd1Sin[Q2])Sin[Q3]) — a23gmSin[Q1]Sin[Q2 + Q3] +
a23gm4Cos[Q3]Sin[Q2]Sin[Q4] + a23gm4Cos[Q2]Sin[Q3]Sin[Q4]))} (3.37)
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3.2.4 Selection of The Motors

For selection of exact motor numerical values will be found. Torquel value will be
only shown and selection of motor for this link. By using the inverse kinematic

analysis joint angles are found. Weight of the links were found using the SolidWorks.

[181= al2 = @.13

a23 = 0.13
ouisi}= @.13
outf152= @.13

[281)= Q1 =@
Q2z=0
Q3=0
Q=0
Qdl = 8.15
Qd2 = 8.12
Qd3 = 8.13
Qda = 8.15
Qddl = @.01
Qdd2 = @.01
Qdd2 = @8.01
Qdd4 = @.01
ml = 2.5
m2=1.1
m3 = @.95
md = 8.3
g=9.81
m=8a.1

Figure 3.2 Torque values of the robotic arm

Out[201)= { - 3.02901 ]

Figure 3.3 One of the torque value

Ty= —0.000359829 Nm
T,= —3.02901Nm
T,= —0.860866 Nm

The servo motor usage is decided in the robot. These are listed in below.
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For the Tyvalue most proper servo motor is MG996R. Datasheet of this servo motor

shown as[6]:

e Operating voltage: 4.8 ~ 6.6V

e Holding Torque: 9.4kg/cm(4.8v)-11kg/cm(6.0v)

e It holds 10mA current at idle. No-load current: 170mA
e Holding current: 1400mA

e Weight: 55¢g

e Size: 40.9x20x42.7mm

For the T, value most proper servo motor is DS3230MG. Datasheet of this servo motor

shown as[7]:

e Holding Torque (5V): 27 kg /cm

e Holding Torque (6.8 V): 32 kg /cm

e Speed: 0.16 sec/ 60 °(5V)/0.12sec/ 60 ° (6.8 V)
e Operating voltage: 4.8 ~7.2 DC

e Weight: 65 g

e Size: 40 x 20 x 40.5 mm

For the T, value most proper servo motor is DS3225. Datasheet of this servo motor

shown as[7]:

e Holding Torque (5V): 21 kg /cm

e Holding Torque (6,8 V): 24,5 kg / cm

e Speed: 0.15sec/60°(5V)/0,13 sec/ 60 ° (6,8 V)
e Operating voltage: 4.8 ~ 6.8 dc volt

e Weight: 60 g

e Type of Motor: DC Motor

e Gear Type: Copper and Aluminum

e Operating frequency: 50-333Hz

e Size: 40 x 20 x 40,5 mm
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4 Remote Control based on MQTT

Protocol

4.1 Software Programming and MQTT Protocol

A lightweight messaging protocol called MQTT (Message Queuing Telemetry
Transport) was created for effective and dependable device-to-device communication,
especially in constrained settings with little bandwidth or high latency. Messages can
be published to topics by devices or applications using the publish-subscribe
messaging pattern used by MQTT, and other devices or applications can subscribe to

those topics to receive the messages.

Mosquitto should be installed into the Rasperry Pi to be able to use MQTT in it. Eclipse
Mosquitto is an open source (EPL/EDL licensed) message broker that implements the
MQTT protocol versions 5.0, 3.1.1 and 3.1. Mosquitto is lightweight and is suitable

for use on all devices from low power single board computers to full servers.

Publish to Topic
Servo Motor Motion Input

Publish (WiFi) to Topic ~
Robot Data (e.g. Motor Angles)
e ¢ MQTT Broker

Subscribe (WiFi) to Topic Topic name:"robot Subscribe to Topic

Input for Servo Motors = Robot Data (e.g. Robot Pos.
- Motor Angles)

Figure 4.1 Simple overview of the MQTT protocol for robot and PC
4.1.1.1 Publish-Subscribe Messaging Pattern

By placing a broker in the middle, the publish-subscribe pattern in MQTT decouples
message senders (publishers) from message receivers (subscribers). Publishers are in
charge of sending communications to the broker without knowing whether or not they
will be read by anyone. By subscribing to particular topics on the broker, subscribers
indicate their interest in receiving messages. The broker serves as a middleman,

transferring published messages from publishers to the appropriate subscribers.
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In this thesis, messages should be published and subscribed in both Raspberry Pi
python and PC with the C# to be able to exchange the data and control the mobile and
serial robot arm. Simple code snippet can be seen below.

private void gripperForward_Click(object sender, EventArgs e)

{
Task.Run(() =>

{
if (mgqttClient != null && mqttClient.IsConnected)
mqttClient.Publish("testtopic",
Encoding.UTF8.GetBytes("Gripper Forward"));
}
B

B &P pi@raspberryp - m]

Figure 4.2 Communication with the Broker

Additionally, connection needs to be created by the C# tool on the PC.

85 Compound Mobile Serial Robot Control — O x

) stop Connection | Online l—'I Mobile Crigin
Robot Contral — Robot Info

Figure 4.3 Establishing of the connection in the PC
4.1.1.2 MQTT Broker

A central server known as the MQTT broker serves as a go-between for publishers and
subscribers. Based on the topic hierarchy and subscription patterns, it receives
published messages from publishers and distributes them to the appropriate
subscribers. The broker is in charge of overseeing client connections, dealing with
subscriptions and unsubscriptions, and making sure messages are delivered
consistently. Popular MQTT broker implementations are readily accessible, including
Mosquitto, HiveMQ, and EMQ.In this thesis, HiveMQ broker have been used.
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4.1.1.3 MQTT Topics

In MQTT, topics act as a hierarchical structure and constitute the foundation for
message filtering and routing. A topic is a string that designates a message's subject or
category. Similar to a file system path, topics are arranged hierarchically using forward
slashes (/) as separators. Examples of acceptable MQTT subjects include
"sensors/temperature™” and "devices/+/status"”. Multiple levels are possible for topics,
allowing for adaptable subscription structures. In subscriptions, wildcards can be used
to match various topics: The topic hierarchy is just one level deep when using the "+"
wildcard. The wildcard "#" matches levels of any number, including O or more levels.
For instance, "devices/+/status™ will match subjects such as "devices/devicel/status"

and "devices/device2/status" if you subscribe to it.

Figure 4.4 Topic of the communication

In the publish-subscribe approach, message decoupling and effective message delivery
are made possible by publishers and subscribers interacting with the MQTT broker.
Subscribers receive communications by subscribing to pertinent topics, and publishers
publish messages to specified topics. Based on the subscribers' subscriptions and the
subject hierarchy, the broker makes sure that published messages are delivered to the

correct subscribers.

MQTT is a flexible and scalable messaging architecture that works well for Internet of
Things (1oT) applications where a large number of devices need to exchange data in a
quick and effective way. Across distributed systems, it enables simple integration, real-

time communication, and efficient information dissemination.
4.1.1.4 C# WinForm Application & Python Script for Remote Control

First of everything, connection to the MQTT broker should be established, this can be

done with the “Start Connection” button with the simple code snippet of the function.

Task.Run(() =>
{
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mqttClient = new MgttClient("broker.hivemq.com");

mgttClient.MqttMsgPublishReceived +=
MgttClient_MqttMsgPublishReceived;

mqttClient.Subscribe(new string[] { "testtopic" }, new byte[] {
MgttMsgBase.QOS_LEVEL_AT_LEAST_ONCE });

mqttClient.Connect("testtopic");

b;

Thanks to the MgttMsgPublishReceived function, tool will be able to read
the data from the broker continuously, since the message also can be

published by the robot via Raspberry Pi, it’s code snippet can be seen.

var message = Encoding.UTF8.GetString(e.Message);
if (message.StartsWith("Servol"))
{
string pattern =
@"Servol\=(.*?),Servo2\=(.*?),Servo3\=(.*?),Servod\=(.*)";
RegexOptions options = RegexOptions.Multiline;
foreach (Match m in Regex.Matches(message, pattern, options))
{
firstJoint.Invoke((MethodInvoker)(() => firstJoint.Text =
m.Groups[1].Value));
secondJoint.Invoke((MethodInvoker)(() => secondJoint.Text
m.Groups[2].Value));
thirdJoint.Invoke((MethodInvoker)(() => thirdJoint.Text =
m.Groups[3].Value));
fourthJdoint.Invoke((MethodInvoker)(() => fourthJoint.Text
m.Groups[4].Value));
}
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Figure 4.5 Main view and control of the motors on WinForm tool
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4.1.1.5 Robot Control Window

In this window, each motor included in the mobile and robot arm can be controlled to
forward and backward, forward will increase robot angle 20 degrees and backward
will decrease robot angle 20 degrees, with this window mobile and serial robot can be

controlled manually to the desired point.
4.1.1.6 Robot Info Window

With this window mobile and serial robot arm control can be controlled automatically

with Forward and Inverse kinematics automatization.

Robot Position X, Y, Z represents position of the end-effector for the gripper, Mobile
Position X and Y represents position of the mobile robot about the save mobile origin
from the Mobile Origin save button of the tool. Joint Angle 1, 2, 3,4 and gripper angle
represents angles of the servo motors. Whenever Robot Position X, Y, and Z is entered
Joint Angles’ can be calculated by “Inverse” button which calls InverseKinematics
function, this calculation and end-effector position can be checked by the “Forward”

button that calls ForwardKinematics function.

By the “Get Robot Positions” button, C# tool will publish data to the MQTT broker
via topic, raspberry pi python script will be reading the on messages from the broker
again via same topic, whenever this button is clicked desired data will be published
and python script will identify it thanks to its subscription and then raspberry pi will

behave as publisher to send real-time data from the robot to the C# Tool, PC.

Automatized tasks can be handled with the “Run Robot”, whenever end-effector
position is decided and inverse kinematics is calculated automatically by the tool, “Run
Robot” button will change values of the servo motors to the calculated joint angle
values by publishing textbox values filled by the calculation the the MQTT broker via
topic, and then raspberry pi will identify and resolve it with the Regular Expression
(Regex) usage to check each joint angle value of the servo motors from the input text
sent by the C# Tool. Simple part of the “Run Robot” button functionality can be seen.
var robotRunningTest =
"RunServol="+firstJoint.Text+" , RunServo2="+secondJoint.Text+" K RunServo3="

+thirdJoint.Text+", RunServoud="+fourthJoint.Text+" K ";
Task.Run(() =>
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if (mqttClient != null && mqgttClient.IsConnected)
{

mqttClient.Publish("testtopic" ,Encoding.UTF8.GetBytes(robotRunningTest));
D,

85 Compound Mobile Serial Robot Control — O x
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Figure 4.6 Control of the robot automatically by direct and inverse analysis

Direct and inverse kinematics will be automatically handled by the WinForm C# tool
to find joint angles (servo motor angles) from the end-effector X, Y, Z position of the
robotic arm. Information of the end effector position will be received by the python

script running on the raspberry pi which behaves like a publisher in this case.

Necessary transformation matrices were defined to be used in the equations, in
addition to this MathKernel could be used by using NuGet Package of the external
tool. MultiplyMatrix function were written to multiply two matrices, Regex were used

to extract equation result as radian and then it was converted to angle.

There was before jitter when controlling the servo motors, the issue was figured out
and resolved by using PiGPIOFactory as an input for the servo motor variable

decleration, in this case pigpiod service needs to be run by “sudo pigpiod” command.

49



Some parts of the initial version of the Raspberry Pi python code can be seen below.

from gpiozero import AngularServo

import pigpio

from time import sleep

import paho.mqgtt.client as mqtt

import re

from gpiozero.pins.pigpio import PiGPIOFactory

factory = PiGPIOFactory()

servo = AngularServo(18, min_angle=-90, max_angle=90,
pin_factory=factory)
servo2 = AngularServo(23, min_angle=-90, max_angle=90,
pin_factory=factory)
servo3 = AngularServo(24, min_angle=-90, max_angle=90,
pin_factory=factory)
servo4 = AngularServo(25, min_angle=-90, max_angle=90,
pin_factory=factory)
servo5 = AngularServo(12, min_angle=-90, max_angle=90,
pin_factory=factory)

def on_connect(client, userdata, flags, rc):
print("Connected to the broker succesfully!"+str(rc))
client.subscribe("testtopic")

def on _message(client, userdata, msg):
print(str(msg.payload))

if (str(msg.payload) == "Forwardl"):
servo.angle = 90

elif (str(msg.payload) == "Backwardl"):
servo.angle = 0

elif (str(msg.payload) == "Forward2"):
servo2.angle = servo.angle + 20

elif (str(msg.payload) == "Backward2"):
servo2.angle = servo.angle - 20

elif (str(msg.payload) == "Forward3"):
servo3.angle = servo.angle + 20

elif (str(msg.payload) == "Backward3"):
servo3.angle = servo.angle - 20

elif (str(msg.payload) == "Forward4"):

servo4.angle = 90
print("test item")

elif (str(msg.payload) == "Backward4"):
servod.angle = 0
elif (str(msg.payload) == "Get Data"):
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servoAngles = "Servol="+ str(servo.angle) + ",Servo2=" +
str(servo2.angle) + ",Servo3=" + str(servo3.angle) + ",Servo4=" +
str(servo4.angle)

client.publish("testtopic", servoAngles)

elif (str(msg.payload).startswith("RunServol")):

regex =
r"RunServol\=(.*?),RunServo2\=(.*?),RunServo3\=(.*?),RunServod\=(.*)"

pattern = re.compile(regex)

for match in pattern.finditer(str(msg.payload)):

servo.angle = int(match.group(1))

sleep(100)
servo2.angle = int(match.group(2))
sleep(100)
servo3.angle = int(match.group(3))
sleep(100)
servo4.angle = int(match.group(4))
elif (str(msg.payload) == "Gripper Forward"):
servo5.angle = servo5.angle + 20
elif (str(msg.payload) == "Gripper Backward"):

servo5.angle = servo5.angle - 20
print(msg.topic + " " + str(msg.payload))

// Mobile Conditions

if (str(msg.payload) == "MobileForwardl"):
GPIO.output(inl,GPIO.HIGH)
GPIO.output(in2,GPIO.LOW)

elif (str(msg.payload) == "MobileBacwardl"):
print("backward")
GPIO.output(inl,GPIO.LOW)
GPIO.output(in2,GPIO.HIGH)

GPIO.cleanup()

client = mgtt.Client()

client.on_connect = on_connect
client.on_message = on_message
client.connect("broker.hivemq.com", 1883, 60)
client.loop_forever()

51



5 Prototyping of the Robotic Arm

5.1 Assembly and Specification of the Mechanism
5.1.1 Materials

The type of material for the robot arm needed to be chosen before employing laser
cutting. To make the base and linkages stronger and more affordable, sheet metal were

selected. Transmission steel used for the shaft.

After producing everything is needed, there was some issues during the assembling
phase. The alignment of the shaft and motor shaft is the issue at hand. Spacer should
be employed in order to resolve this issue. Delrin fiber were used for this spacer.
Additionally, in order to reduce friction and achieve balanced movement, Delrin fiber

were also employed in the rotating portion of the base.
5.1.2 Weight Analysis for the Links

Weight analyses were handled to sheet metal of the Link-1. There are two Link-1 in

the robot arm.
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Figure 5.1 Weight of the Link-1

52



5.1.3 Assembly of the Robot Arm

During assembly, the robot arm's base began. A top tray, bottom tray, side holders,
and fiber delrin were used in the first phase of assembly.

Figure 5.2 Base of the robot arm

The assembly was then completed by adding the spinning portion of the base. There
were alignment problems with the motor shaft and shaft within this spinning
component. The use of fiber delrin was a solution to these alignment issues. As an

example, consider the following:

Figure 5.3 Fiber Derlin
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After that, the first link to the seating component of our system was fully assembled.
A sheet bending issue that occurred during the laser cutting process was present in
this seating component. The heating procedure that was used to successfully bend the

seating portion was implemented to remedy this issue.

Figure 5.4 Bending test

Figure 5.5 Heating process

The set screw hole was opened once the issue was fixed, and tapping was then done.

Figure 5.6 Assembly of the upper body

54



The assembly was proceeded by connecting the seating part of the upper body to the
base.

Figure 5.7 Assembly of base to the body

After the two links of the robot is assembled to the base of the robot arm, the servo
motor holding parts made of sheet metal are welded to the links so that the servo motor
can be fixed to be able to control the shafts. Additionally, another sheet metal is welded
to the third link to be able to assemble and control the fourth joint, holding part of the

last servo motor were also welded to that sheet metal.

Figure 5.8 Fourth Joint and Gripper
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After that, assembly of the mobile robot has been handled, DC motors and gear system
of the mobile robot is checked, configured and fixed. Sheet metal was produced for
the mobile robot and robot arm assembly, Delrin was used for this assemply in addition

to sheet metal. It can be seen below.

Figure 5.9 Front side of the mobile robot

|

Figure 5.10 Back side of the mobile robot

Figure 5.11 Wheels and gear system with DC motor
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Assembly of the mobile and serial robot arm has been established.

Figure 5.12 Compound mobile and serial robot arm

In this thesis, additionally to the robot arm, mobile robot can be also controlled
remotely with MQTT protocol by publish and subscriber pattern from the desired topic
from the broker. In that case, mobile robot DC motor can be controlled from the C#

WinForm tool.

At the circuit level, electrical electronic parts such as voltage reducer, cable, LiPo
battery, DC power supply, L298N motor driver, servo motors, Raspberry Pi 3B,

breadboard and etc. were used.

5.2 Trajectory Planning

Trajectory planning is planning of the desired movements of the manipulator.
Manipulators with multi degree of freedom for accomplishing various complex
manipulation in the work space. Path is only for geometric description but trajectory

also include timing change of the manipulator.

Trajectory planning include 2 terms that are joint space and operational space. Joint

space is motion to be made by the robot by its joint values. The motion between the
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two points is unpredictable. In operational space two points is known at all times and
it is controllable.

5.2.1 Joint-Space Trajectories

Trajectories are specified by defining some characteristic points that are directly
assigned by some specifications and assigned by defining desired configurations x in
the work-space, which are then converted in the joint space using the inverse kinematic
model.

In that given points trajectories must be computationally efficient, the position and
velocity profiles must be continuos functions of time, undesired effects must be

minimized or completely avoided.
5.2.2 Polynomial Trajectories

In these cases a trajectory is specified by assigning initial and final conditions on: time
, position, velocity, acceleration. Then, the problem is to determine a function q = q(t)

so that condition is satisfied.
Polynomial functions should solved as;
q(t) = ag+ a;t + axt® +...+ a,t" (5.1)

The degree n (3, 5, ...) of the polynomial depends on the number of boundary
conditions that must be verified and on the desired “smoothness” of the trajectory.
Given an initial and a final instant ti,tr , a (segment of a) trajectory may be specified by

assigning initial and final conditions:

e initial position and velocity g;, g;

. final position and velocity g, g5

There are four boundary conditions in this situation, so a polynomial of degree at least
3 must be considered from the Eq. 5.1.

q(t) = ag+ a;t + a,t? + ast3
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Where the four parameters ao, ai, a2, a3 must be defined so that the boundary conditions
are satisfied.

From the boundary conditions, it follows that

q(t) = ag+ a ti + ayti? + asti® = g (5.2)

Equations should be followed as shown below, by taking derivative of the equation.

q (tl) = a1+ Zazti + 3a3ti2 = ql'

q(tf) =ap+ aitf + aptf? + astf? = qf

q (tf) = a1+ 2axtf + 3astf? =qy

In order to solve these equations, the first moment of the motion is assumed that
ti=0.

Therefore:

a =q;

a1 = q;

2=(-3(qi—qr)~ 2 q +qp)tr) | t?

a=(2(q;—qp) +(qi +qp) te ) 163

5.2.3 Task Planning for the End Effector

For the robot arm, necessary steps of the task are determined. First of all, start position
is setted. This point represent as a pole position and the movement starts from here.
After that, the movement path of the robot arm are needed to be defined. For this
movement, the way points of the end effector are determined. Thanks to these way

points, joint positions and velocities can be found.

59



Firstly, waypoints of the robot arm are identified according to workspace of the robot
arm. These waypoints also include pole position and final position of the end effector.
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Figure 5.13 Waypoints of our Robot Arm

Pole position of the robot arm is selected by using the workspace analysis which is
done previously. This pole position coordinates are shown below:
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Figure 5.14 Workspace analysis for the pole position

After the selection of coordinates of the pole position, inverse kinematics is applied to
find corresponding joint positions. After inverse analysis of robot arm, selection of the

joint position done according to robot arm.

Q1 =1.0472 Q2=271313 Q3=-0.729867 Q4 =2.22228
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Finally, after finding the joint positions by inverse analysis, accuracy of these positions

Is checked according to direct analysis.
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Figure 5.15 End-Effector Position
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Figure 5.16 Joint Angles

The second position of the robot arm is selected by using the workspace analysis which

is done previously. This second position coordinates are shown below:
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Figure 5.17 Workspace analysis for the second position

After the selection of coordinates of the second position, inverse kinematics is applied

for finding joint positions.

Q1=-0.70127 Q2 =1.07024

Q3 =-1.542

Q4=0

Finally, after finding the joint positions by inverse analysis, accuracy of these positions

checked according to direct analysis.
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Figure 5.18 End-effector positions
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Third position of the robot arm is selected by using the workspace analysis which is
done previously. This third position coordinates are shown below:
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Figure 5.20 Workspace analysis for the third postion

After selection of coordinates of third position, inverse kinematics is applied for

finding joint positions.
Q1=1.18682 Q2=217322 Q3=-0.473627 Q4 1.66013

Finally, after finding the joint positions by inverse analysis, the accuracy of these

positions are checked according to the direct analysis.
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Figure 5.21 End-effector positions Figure 5.22 Joint Angles

Fourth position of the robot arm is selected by using the workspace analysis which is

done previously. This fourth position coordinates are shown below:
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Figure 5.23 Workspace analysis for the fourth position
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After the selection of coordinates of the last position, inverse kinematics is applied for

finding joint positions.

Q1=116937 Q2=1.90315 Q3=-0.482841 Q4 =1.57087
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Figure 5.24 End-effector position Figure 5.25 Joint Angles

5.2.4 Assumed Polynomial Functions for Each Joint Positions

First Joint

In order to find polynomial equations in the first step, first time of the joint is assumed

asti=0.

Therefore:

A= q;

a1 =gq;

2=(-3(q:—q) - Qq+qpt) | t?

a3=(2(q; —qp) *+ (@ +qp) te )/ t°

For pole position of our robot arm, velocity is assumed as 0 so;
q11=0

Then;
ai=0

According to position of first joint for pole position of our robot arm, previously

position is found as;
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q11=1.0472
Then;

ao=1.0472

For finding a2, qgvalue should be known, then this value equal to joint value in the

second position so;

qr1=-0.70127

For finding az, alsoq, value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet.
Then;
a2= (—3(1.0472+0.70127) — (2 * 0 +0.07) t¢) / t¢?
as= (2(1.0472+0.70127 ) + (0 +0.07) tr )/ t;°
Second Joint
In order to find polynomial equations in first step, the moment that ti assumed as 0.
For pole position of our robot arm, velocity is assumed as 0 so;
q21=0
Then;
ai=0

According to position of second joint for pole position of our robot arm, previously

this position is found as;

Gyq=2.71313
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Then;

ao=2.71313

For finding a2, gqyvalue should be known, then this value equal to joint value in the

second position so ;

qp1= 1.07024

For finding az, alsoq, value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet.
Then;
a=(—3(2.71313-1.07024) — (2 * 0 +0.07 ) t¢ ) / t;2

as= (2(2.71313-1.07024) + (0 +0.07) tr )/ t;3

Third Joint

For pole position of our robot arm, velocity is assumed as 0 so ;
q31=0

Then;
ai=0

According to position of third joint for pole position of our robot arm, previously this

position is found as;
qs1= - 0.729867

Then;
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ao= - 0.729867

For finding a2, gyvalue should be known, then this value equal to joint value in the

second position so ;
qrs= -1.542

For finding az, alsoqy value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet.
Then;
a=(—3(- 0.729867+1.542) — (2 * 0 +0.07 ) t¢) / tr?
as= (2(- 0.729867+1.542) + (0 +0.07) t; )/ t;3
Fourth Joint
For pole position of our robot arm, velocity is assumed as 0 so;
q41=0
Then;
a=0

According to position of fourth joint for pole position of our robot arm, previously this

position is found as;
Q4= 2.22228
Then;

ao= 2.22228
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For finding a2, gyvalue should be known, then this value equal to joint value in the

second position so;
qrs=0

For finding az, alsog, value should be known, this value is assumed as ‘0.07. This

assumption is made according to motor datasheet.
Then;
a= (—3(2.22228 - 0) — (2 * 0 +0.07 ) tr) / tf?

as=(2(2.22228 - 0) + (0 +0.07) tr )/ t¢3

Finding Polynomial Equations For Second Position
First Joint

After finding this equation for pole position ti can’t considered as 0. So equations are

became as;
d=q;
a1 =g;
a2=(-3(q; —qp) — 2 q; + q5) (tr- 1)) / (tr-t)?
as=(2(q; — qp) + (q: + qp) (tr- 1)) / (tr- 1) °

According to position of first joint for second position of our robot arm, previously

this position is found as;

g1,=-0.70127
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Then;

ao=-0.70127

For finding az, alsog, value should be known, this value is assumed as ‘0.07. This

assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.
Therefore;
q1,= 0.07
Then;
= qq2

For finding a2, gsvalue should be known, then this value equal to joint value in the

third position so;
q71= 1.16937
a2=(—3(-0.70127-1.18682) — (2 *0.07 +0.07 ) (t¢ - ti)) / (ts - t;) 2
as= (2(-0.70127 -1.18682) + (0.07 +0.07) (t- ti)) / (tr- ti) 2
Second Joint

According to position of second joint for second position of our robot arm, previously

this position is found as;
q22=1.07024

Then;

ao=1.07024
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For finding az, alsoq, value should be known, this value is assumed as ‘0.07’. This
assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.
Therefore;

q22=0.07
Then;

a1= 0.07

For finding a2, qyvalue should be known, then this value equal to joint value in the

third position so;
qp2= 2.17322
a= (—3(1.07024 - 2.17322) — (2 * 0.15 +0.15 ) (tr - t;)) / (tr- t;) 2
as= (2(1.07024 - 2.17322) + (2 * 0.15 +0.15) (tr - t)) / (t; - ;) 3
Third Joint

According to position of third joint for second position of our robot arm, previously

this position is found as;

sy = -1.542
Then;

ao=-1.542

For finding a2, alsog, value should be known, this value is assumed as ‘0.07’. This
assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.

Therefore;
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Then;
ai=0.07

For finding a2, qyvalue should be known, then this value equal to joint value in the

third position so;
qr3= -0.473627
2= (—3(-1.542 + 0.473627) — (2 * 0.07 +0.07 ) (tr - t))) / (tr- t) 2
as= (2(-1.542 + 0.473627) + (0.07 +0.07) (tr - t)) / (t; - t;) 3
Fourth Joint

According to position of fourth joint for second position of our robot arm, previously

this position is found as;

qsz= 0
Then;

a= 0

For finding az, alsoq, value should be known, this value is assumed as ‘0.07’. This
assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.

Therefore;
Then;

ai= 0.07
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For finding a2, qgvalue should be known, then this value equal to joint value in the

third position so ;
qrs= 166013
a=(—3(0- 1.66013) — (2 * 0.15 +0.15 ) (tr - t;)) / (tr - t;) 2
as= (2(0 - 0.473627) + (2 * 0.15 +0.15) (t¢ - ti)) / (t¢-t;) 3
Finding Polynomial Equations For Third Position
First Joint

According to position of first joint for third position of our robot arm, previously this

position is found as;

q15= 1.18682
Then;

ao=1.18682

For finding a2, alsoq, value should be known, this value is assumed as ‘0.07". This
assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.
Therefore;

q13=0.07
Then;

ai= 0.07

For finding a2, qfvalue should be known, then this value equal to joint value in the

fourth position so;

a= (—3(1.18682-1.16937) — (2 * 0.07+0.07 ) (ts - ti)) / (t¢-t;) 2

71



a3 = ( 2(1.18682-1.16937) + (0.07+0.07) (ts- ti)) / (tr-t)*
Second Joint

According to position of second joint for third position of our robot arm, previously

this position is found as;

qz3= 2.17322
Then;

ao=2.17322

For finding az, alsoqy value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.
Therefore;

g =0.07

23

Then;

ai= 0.07

For finding a2, gsvalue should be known, then this value equal to joint value in the

fourth position so;
q7,= 1.90315
a=( —3(2.17322-1.90315) — (2 * 0.07 +0.07 ) (tr - t)) / (tr- t;) 2
as= (2(2.17322-1.90315) + (0.07 +0.07) (tr- t))) / (tr-t;) 3
Third Joint

According to position of third joint for third position of our robot arm, previously this

position is found as;
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qs33=-0.473627
Then;
ao=-0.473627

For finding az, alsog, value should be known, this value is assumed as ‘0.07. This
assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.
Therefore;

§ =007
33

Then;
ai= 0.07

For finding a2, grvalue should be known, then this value equal to joint value in the

fourth position so;
qr3= -0.482841
a=( —3(-0.473627+0.482841) — (2 * 0.07 +0.07 ) (tr - ti)) / (tr-t;) 2
as = (2(-0.473627+0.482841) + (0.07 +0.07) (- t;)) / (tr-t)*
Fourth Joint

According to position of fourth joint for third position of our robot arm, previously

this position is found as;

Gas= 1.66013

Then;

ao=1.66013
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For finding az, alsoq, value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.
Therefore;

g =0.07
43

Then;
a;=0.07

For finding az, qrvalue should be known, then this value equal to joint value in the

fourth position so;
qs4= 1.57087
a=( —3(1.66013-1.57087) — (2 * 0.07 +0.07 ) (tr - ti)) / (s - t;) 2
as = (2(1.66013-1.57087) + ( 0.07 +0.07) (tr - t;)) / (tr - t;) 3
Finding Polynomial Equations for the Last Position
First Joint

According to position of first joint for fourth position of our robot arm, previously this

position is found as;

qu4= 1.16937
Then;

ao= 1.16937

For finding az, alsog, value should be known, this value is assumed as ‘0.07’. This
assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.

Therefore;
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Then;
ai=0.07

For finding a2, qyvalue should be known, then this value equal to joint value in the

fourth position so;
qy1= 1.16937
a=(—3(1.16937-1.16937) — (2 *0.07 +0.07) (ts - ti)) / (tr - ti) 2

as= ( 2(1.16937-1.16937) + (0.07 +0.07) (ts - ti)) / (s - ti) 3

Second Joint

According to position of second joint for fourth position of our robot arm, previously

this position is found as ;

4= 1.90315
Then;

ao=1.90315

For finding a2, alsoqy value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.
Therefore;

q14=0.07
Then;

ai= 0.07
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For finding a2, qgvalue should be known, then this value equal to joint value in the

fourth position so ;
q52= 1.90315
a=(—3(1.90315-1.90315) — (2 * 0.07 +0.07) (tr - t))) / (tr-t;) 2
as = (2(1.90315-1.90315) + (0.07 +0.07) (t¢- ti)) / (tr-ti) 3
Third Joint

According to position of third joint for fourth position of our robot arm, previously

this position is found as;
q34= -0.482841
Then;
ao=-0.482841

For finding az, alsoqy value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.
Therefore;

q34=0.07
Then;

ai= 0.07

For finding a2, gqyvalue should be known, then this value equal to joint value in the

fourth position so;

qp3= -0.482841
a2= ( —3(-0.482841+0.482841) — (2 * 0.07 +0.07) (tr - ti)) / (ts - t;) 2

as = ( 2(-0.482841+0.482841) + (0.07 +0.07) (tr - t)) / (t - t;) 3
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Fourth Joint

According to position of fourth joint for fourth position of our robot arm, previously

this position is found as;

qaq=1.57087
Then;

ao=1.57087

For finding az, alsoq, value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.
Therefore;

qa4=0.07
Then;

a1= 0.07

For finding az, q¢value should be known, then this value equal to joint value in the

fourth position so;
qr4= 1.57087
a=(—3(1.57087-1.57087) — (2 * 0.07 +0.07) (t¢ - t))) / (t¢ - t;) 2
as= (2(1.57087-1.57087) + (0.07 +0.07) (tr- t})) / (tr-t;)3

5.3 NUMERICAL POLYNOMIAL FUNCTIONS

After found all parametrical polynomial functions, all numeric values should be found

according to parametrical equations.

First Joint with Numerical Values
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Numerical values were found by entering all values in numerically according to

parametrical polynomial functions.

agl =1.8472
202 = -0.70127
adel =@

a2l = (-2%(a01-a02) - (2+6+ 0.07) 2) /22
a31 = (2% (a@1-a02) + (@ +0.07) 2)/2~3

1.8472

B8.78127

1.34635

B8.4545617

Figure 5.26 First Joint Motion from First Position to Second Position

Numerical values are entered in the parametrical polynomial function, then position

graph is drawn according to numerical polynomial function.
Plot [0.45461749999999995" t ~3 - 1,3463524999999998" t~2 +1.0472, {t, @, 2}]

10

0.5

0.5 10 15 20

-05

Figure 5.27 Position Change Graph

The position graph of the first position at each position was found with the same

method and checked to see if it was following each other.

In the first graph the movement of the first joint from the first position to the second
position starts at 1.0472 and ends at -0.70127, and these values can be seen on the
graph.
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In the second graph the movement of the first joint from the second position to the
third position should start at -0.70127 and end at 1.18682, and these values can also be

seen on the graph.

Therefore, it was concluded that the first two movements followed each other. This

compare shown below;

Plot[-0,4370225" £"3+1,3110675 t*2+0,07 t-0,70127, (t, @, 2}]

10

05

05 10 15 20

-05

Figure 5.28 First to Second Position
Plot [9,030352409999999995 t*3- 0, 11808749999900908" £4+0.07 t + 1,868 {t, 8, 2}

10

0.5

0.5 10 15 20

-05

Figure 5.29 Second to Third Position

In the third graph the movement of the first joint from the third position to the fourth
position starts at 1.18682 and ends at 1.16937, and these values can be seen on the

graph.

In the fourth graph the movement of the first joint from the fourth position to the fourth
position which is made for to get zero to joint velocities should start at 1.16937 and

end at 1.16937, and these values can also be seen on the graph.
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Therefore, it was concluded that the third movement followed the second and the

fourth movement followed the third thank to graphs which are drawn according to

numerical polynomial functions. This compare shown below;

05 10 15 20

Figure 5.30 Third to Fourth Position

05 10 15 20

Figure 5.31 Stop Motion of the Robot Arm

These data were entered as a SolidWorks data points for using motion simulation of

our robot arm. All values are converted from radians to degrees.

Time (s} Value Time (8} Vale
s 55.55deg o8 -40.11d8g
0.5s 48, Thdeg 0.Es 22 S2deg
18 12, 61deg is 16.04deg
155 -28.65deg 158 51.57deg
Zg 40.11deg 2% &8.01deg
ik o 50d rowr CHek 1 8dd row
= SO0 A
E_ E 5040
= §
,E_ E B B S T S
= 0.5 1.0 1.5 2.0 o s 1.0 1.5 20
= Time s 8 Tine (1]
-50,0 -50.0

Figure 5.32 SolidWorks Data Entries
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Time (s) Value Time (s) Value
Os 58.01deg 0= 65 0%deg
0.58 63.69deg 0.5s 68.07deg
1s 67.49deg 1s 68.00deg
1.58 66.52deg 158 67 44deg
2s 656.99deg 25 66.98deg
Click to add row Click to add row

69.0+
= | =
= 63.07 E
o 1 o
m ! m
3 6701 2
w] _:_ [m]
i
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Time (s) Time (3]

Figure 5.33 SolidWorks Data Entries for other joints

After, finding first joint position graphs for each position change, velocity change
graphs is found by taking derivative of the third order polynomial function. Initially

the velocity will be 0, then the velocity rises to constant speed of 0.07.

D[@.454617490999999995" ©~ 3 - 1,3463524009000998 t2 + 1.0472, t]

2.6927 t-1.36385 ¢

Plot [-2.6927049999999997" t +1.3638525° t7, {t, @, 21]

Figure 5.34 First Joint Velocity From First Position to Second Position
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After the velocity rised to constant speed of 0.07, it will be equal throughout the entire

movement as 0.07.

D[-8.4378225" 23 +1.3110675" £ ~2+0.67 t -0.701 o(n.0 Cn3-w.a1808 e2.0.071 4110682, 1]

©.87 +2.62214 ¢ - 1.31187 t°

__.
B e

Plot[0.07" +2.622135" t - 1,3118675° t%, {t, 8, 2} O-2MATEHHIHGIT £ +D-LIMEBORANEN" 1, i, 4, 21)

¥

[l

Figure 5.35 Constant Velocity of the Second and Third Position Change

Finally, the velocity will decrease to 0 again and the motion will end.

0.06
0.04

0.02

0.5 10 15 .0
-0.02

Figure 5.36 Decrease to the ‘0’ Velocity

Finally, after finding first joint velocity graphs for each position change, acceleration

change graphs is found by taking derivative of the velocity polynomial functions.

o[-:.ma?mgnqemi‘ t+1.3628525 o7, ]

2EG2T 42 T2FT1 L

Plot[-2.6927040000000997" + 2, 727705° ¢, (L, @, 2}]

Figure 5.37 Acceleration Change of the Figure 5.28
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Acceleration calculation was made for each position change.
Joint Motions for First Position to Second Position

For second joint in first position to second position;

Toz4

{3012 - 30EE) = (20 e B.67) 2} /2°2
2012 - 2032) « (000,07} 2) /273

Figure 5.38 Second Joint From First Position to Second Position

All numerical data were converted from radians to degrees, then entered as simulation

data in SolidWorks and the same position graphs were obtained.

_ 160.0% .
= -
5 140.0 .
Time (s) Value 2 ~
0s 155 27deg § 1200
05s 143 24deg & 100.0 AN
15 108.86deg £ 500 .
158 74.43deg S o0 -
2z 61.31deg T
Click to add row 0.0 0.5 10 1.5 2.0

Time (s}

Figure 5.39 SolidWorks Motion of the Figure 5.38

For third joint in first position to second position;

2813w =0, 729867

az13 13- a023) - (2484 0.07) 2) /272
a313 = (2e (3013 - 3023 + (@4 0.07) 2) /273

#.720867
1,542
#6841
#,220533

P1oT[0.22053325000000001" 13 - 064409975 £~2 - 8,720867" , (T, 8, 2}]

Figure 5.40 Third Joint From First Position to Second Position
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Time () Value E
s _41.77deg po
0.58 45 26deq E
18 _57.04deqg 2
1.58 -80.79deg =
2s _28.35deg =]
Click to add row

0.5 1.0 1.5 2.0
Time [s)

Figure 5.41 SolidWorks Motion Data of the Figure 5.40

For the fourth joint in first position to second position;

aBd = 2,22228

ald =@

204 = (~3u (204 -a14) - (2e0+ 0.07) 2) /22
2304 = (25 (aBd - ald} + (B+0.07) 2) /273

2.22228

@
178171

@.57387

Plot[0.57307° 13 -1, 70471 ©*2+2.22228°, {1, @, 2}]

Figure 5.42 Fourth Joint From First Position to the Second Position

150.0
Time (8} WValue — .
0s 127.31deg S 1000 \
055 114.58deg = AN
Ts 58 75deg g AN
g .,
1.55 20.05deg g 300 AN
25 0.00deg = .
Click to add rowr e S
0.5 1.0 15 20

Time (s}

Figure 5.43 SolidWorks Motion Data of Figure 5.42

All these procedures were repeated for each position change of each joint. Then each

of them was entered into the SolidWorks as simulation data.
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5.4 Path Drawing

The waypoints obtained from the workspace analysis were checked on the graph which
is drawn by using polynomial equations that was found with cubic polynomial function

method.

The polynomial equations obtained after the correctness of our position, velocity and
acceleration graphs were checked in the workspace analysis by entering these

polynomial equations into the matlab code in a for loop as ;

for t=0:0.01:2

gl = 0.0393624999995999995%t"3 — 0.118087499959999998*t"2 + 0.07*t + 1.18&82
g2 = 0.10251750000000007*t"3 - 0.30755250000000023*t"2 + 0.07*c + 2.17322
g3 = 0.0373035%t"3 - 0.111%1050000000001%c"2 + 0.07*t - 0.473627

g4 = 0.05731500000000003*c"3 - 0.1719450000000001*c"2 + 0.07*c + 1.66013

Figure 5.44 Data Entry in Matlab as Polynomial Function

Figure 5.45 Path Drawing of our Robot Design for Four Position
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5.5 Position Change of the Robot Arm

5.5.1 Position Simulation in SolidWorks

Pole position of our robot arm shown below;

Figure 5.16 The Pole Position to Second Position SolidWorks Simulation

After pole position to second position, each joint make movement. Below, the robot
takes the piece.

Figure 5.17 The Second Position to Third Position SolidWorks Simulation

After second position to third position, Below is the middle waypoint of the robot.

Figure 5.18 The Third Position to Fourth Position SolidWorks Simulation

86



After third position to fourth position, Below, the robot leaves the piece on the table.

Figure 5.19 The Last Position SolidWorks Simulation

5.5.2 Position Simulation in the Produced Robot

After the robot parts are produced and assembled, its electrical circuit has been done,
by using python script in the Raspberry Pi which is connected to the compound mobile
and serial robot and C# WinForm tool executing in the PC, compound mobile and

serial robot and its joints are controlled.

Figure 5.20 Initial position of the robot arm
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After robotic arm setup is done, joints were controlled and position is changed as
shown below to the second position.

Figure 5.21 Second Position of the robot arm

After robot is reached to second position, it can be stand in there, by running the scripts
and controlling robot from the C# WinForm tool manually or automatically by the

inverse kinematics, robot were moved to the final position which was planned to go.

Figure 5.22 Final Position of the robot arm
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