

Design and Development of a

Compound Mobile Serial Robot with

Remote Control Application

Submitted to the Institute of Science and Technology in partial

fulfillment of the requirements for the degree of

Master of Science of Engineering

in Robotics Engineering

by

Alpay Toprak

ORCID 0000-0003-3417-8926

August, 2023

This is to certify that we have read the thesis Design and Development of a

Compound Mobile Serial Robot with Remote Control Application submitted by

Alpay Toprak, and it has been judged to be successful, in scope and in quality, at the

defense exam and accepted by our jury as a MASTER’S THESIS.

APPROVED BY:

Advisor: Assist. Prof. Dr. Duygu ATCI

 İzmir Katip Celebi University

Committee Members:

Assist. Prof. Fatih Cemal CAN

İzmir Katip Celebi University

Prof. Dr. H. Seçil ARTEM

İzmir Institute of Technology

Date of Defense: August 7, 2023

ii

Declaration of Authorship

I, Alpay Toprak, declare that this thesis titled Design and Development of a

Compound Mobile Serial Robot with Remote Control Application and the work

presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for the Master’s

degree at this university.

• Where any part of this thesis has previously been submitted for a degree or any

other qualification at this university or any other institution, this has been

clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given. This

thesis is entirely my own work, with the exception of such quotations.

• I have acknowledged all major sources of assistance.

• Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

Date: 07.08.2023

iii

Design and Development of a Compound Mobile Serial

Robot with Remote Control Application

Abstract

The design of a compound mobile serial robot controlled remotely by a C# program

utilizing the MQTT (Message Queuing Telemetry Transport) protocol is the main

topic of this thesis. The robot is powered by a Raspberry Pi. The advantages of mobility

and serial manipulators are combined in the compound mobile serial robot, allowing

it to carry out difficult tasks in a variety of settings. As the main computer, the

Raspberry Pi gives the robot and its control application connectivity and processing

capability. Data interchange and command execution are made possible by the

integration of the MQTT protocol, which guarantees effective and dependable

connection between the robot and the control system. The integration of the MQTT

protocol, hardware components, mechanical design, kinematic and dynamic analysis

of the robot, and software implementation are all investigated in this study. This thesis

intends to stimulate additional ideas in the field of intelligent and remotely operated

robotic systems by utilizing the capabilities of Raspberry Pi and MQTT. For the

protocol implementation, a 4 DoF serial arm and the mobile station connected to it

were designed with mechanical design and prototype production was made,

additionally direct and inverse kinematics of the robot arm has automatized with the

C# WinForm application, thanks to this developed application, robot arm control was

fully automatized and controlled. The thesis has demonstrated a novel applicacation

of the protocol to a compound mobile serial robot, only there is no video for both

mobile and serial robot arm working at the same time.

Keywords: Compound mobile serial robot, Remote Control, C# Application, MQTT

Protocol, Raspberry Pi, Robotics, Kinematic and Dynamic Analysis.

iv

Uzaktan Kontrol Uygulamalı Bileşik Mobil Seri Robot

Tasarımı ve Geliştirilmesi

Öz

Bu tez, Raspberry Pi tarafından güçlendirilen MQTT (Message Queuing Telemetry

Transport) protokolünü kullanarak uzaktan kontrol edilen bir bileşik hareketli seri

robotun tasarımı ve geliştirilmesine odaklanmaktadır. Bileşik hareketli seri robot,

hareket kabiliyeti ve seri manipülatörlerin avantajlarını bir araya getirerek çeşitli

ortamlarda karmaşık görevleri gerçekleştirebilme yeteneğine sahiptir. Raspberry Pi,

robotun ve kontrol uygulamasının bağlantı ve işleme yeteneklerini sağlayan merkezi

bir bilgisayar olarak hizmet vermektedir. MQTT protokolünün entegrasyonu, robot ile

kontrol sistemi arasında etkili ve güvenilir iletişimi sağlayarak gerçek zamanlı veri

alışverişi ve komut yürütme imkanı sunmaktadır. Bu araştırma kapsamında, donanım

bileşenleri, mekanik tasarım, robotun kinematik ve dinamik analizi ile yazılım

uygulaması incelenmektedir. Bu tez, Raspberry Pi ve MQTT'nin yeteneklerinden

faydalanarak zeki ve uzaktan kontrol edilebilen robot sistemleri alanında ilave

fikirlerin ortaya çıkmasını amaçlamaktadır. Protokol implementasyonu için mekanik

tasarım ile 4 serbestlik dereceli bir seri kol ve buna bağlı mobil istasyon tasarlandı ve

prototip üretim yapıldı, aynı zamanda tüm ileri ve ters kinematik analizler C#

uygulamasına entegre edeldi ve gerçek zamanlı veri değişimi ile robot kontrolü

sağlandı. Tez, yukarıdakilerin uygulanabilirliğini göstermiştir. Mobil ve robot kolunun

birlikte aynı anda çalışırken bir videosu bulunmamaktadır.

Anahtar Kelimeler: Bileşik Mobil Seri Robot, Uzaktan Kontrol, C# Uygulaması,

MQTT Protokolü, Raspberry Pi, Robotik, Akıllı Sistemler, Kinematik ve Dinamik

Analiz.

v

Table of Contents

1 Introduction ... 1

1.1 Literature Review & Research and Analysis ... 3

1.1.1 Remote Control of Robot Arm with five DoF ... 3

1.1.2 Multi-sensor based glove control of industrial mobile robot arm 4

1.1.3 Wireless Network for Mobile Robot Applications ... 5

1.1.4 Finger Robotic control use M5Stack board and MQTT Protocol based 6

1.2 Project Design Processes ... 8

1.3 Job Definition and Task of the Project ... 8

2 Design and Analysis of the Serial Robot ... 9

2.1 Conceptual Design ... 9

2.2 Kinematic Analysis ... 11

2.2.1 Workspace Analysis with Matlab Simulation in Simulink 12

2.2.2 Forward Kinematics (Direct Task) .. 15

2.2.3 Inverse Kinematics ... 21

3 Jacobian and Dynamic Analysis of the Robot .. 26

3.1 Jacobian Analysis.. 26

3.2 Dynamic Analysis ... 32

3.2.1 Forward Dynamic Analysis ... 33

3.2.2 Backward Dynamic Analysis ... 37

3.2.3 Determination of the Torques of the Motors .. 40

vi

3.2.4 Selection of The Motors ... 42

4 Remote Control based on MQTT Protocol ... 44

4.1 Software Programming and MQTT Protocol.. 44

5 Prototyping of the Robotic Arm ... 52

5.1 Assembly and Specification of the Mechanism ... 52

5.1.1 Materials .. 52

5.1.2 Weight Analysis for the Links ... 52

5.1.3 Assembly of the Robot Arm ... 53

5.2 Trajectory Planning .. 57

5.2.1 Joint-Space Trajectories ... 58

5.2.2 Polynomial Trajectories ... 58

5.2.3 Task Planning for the End Effector ... 59

5.2.4 Assumed Polynomial Functions for Each Joint Positions 63

5.3 NUMERICAL POLYNOMIAL FUNCTIONS ... 77

5.4 Path Drawing .. 85

5.5 Position Change of the Robot Arm .. 86

5.5.1 Position Simulation in SolidWorks ... 86

5.5.2 Position Simulation in the Produced Robot ... 87

6 References ... 89

7 Curriculum Vitae .. 90

vii

List of Figures

Figure 1.1 MQTT protocol overview ... 2

Figure 1.2 GUI for the researched project ... 4

Figure 1.3 Hand controller of the robot ... 5

Figure 1.4 Overview of the article ... 5

Figure 1.5 Architecture Network Design of this research.. 7

Figure 2.1 Conceptual Design DH Parameters .. 9

Figure 2.2 Detailed Mechanical Design of Robot in SolidWorks 10

Figure 2.3 AutoCAD Overall View ... 11

Figure 2.4 AutoCAD drawing by part ... 11

Figure 2.5 Workspace Analysis Result .. 13

Figure 2.6 Section from the Matlab Simulation ... 13

Figure 2.7 Slider Gain for Preparing Angle Value of the Link 14

Figure 2.8 30 Degree Slider Gain For Preparing Angle Value of Link 14

Figure 2.9 30 Degree Slider Gain of Robot Link ... 14

Figure 2.10 Model of transformation matrix.. 18

Figure 2.11 Position analysis in SolidWorks with conceptual design 18

Figure 2.12 Transformation matrices method in Microsoft Excel 19

Figure 2.13 Transformation matrix of final position of the robotic arm 19

Figure 2.14 Forward & Inverse Kinematics Calculation .. 21

Figure 3.1 DH table for Jacobian Analysis .. 27

file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111400
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111402
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111403
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111404
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111405
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111406
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111407
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111408
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111409
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111410
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111411
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111412
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111414

viii

Figure 3.2 Torque values of the robotic arm .. 42

Figure 3.3 One of the torqu value .. 42

Figure 4.1 Simple overview of the MQTT protocol for robot and PC 44

Figure 4.2 Communication with the Broker .. 45

Figure 4.3 Establishing of the connection in the PC .. 45

Figure 4.4 Topic of the communication ... 46

Figure 4.5 Main view and control of the motors on WinForm tool 47

Figure 4.6 Control of the robot automatically by direct and inverse analysis 49

Figure 5.1 Weight of the Link-1 .. 52

Figure 5.2 Base of the robot arm .. 53

Figure 5.3 Fiber Derlin ... 53

Figure 5.4 Bending test .. 54

Figure 5.5 Heating process ... 54

Figure 5.6 Assembly of the upper body ... 54

Figure 5.7 Assembly of base to the body ... 55

Figure 5.8 Fourth Joint and Gripper ... 55

Figure 5.9 Front side of the mobile robot .. 56

Figure 5.10 Back side of the mobile robot ... 56

Figure 5.11 Wheels and gear system with DC motor .. 56

Figure 5.12 Compound mobile and serial robot arm ... 57

Figure 5.13 Waypoints of our Robot Arm ... 60

file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111415
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111416
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111435

ix

Figure 5.14 Workspace analysis for the pole position ... 60

Figure 5.15 Joint Angles .. 61

Figure 5.16 End-Effector Position ... 61

Figure 5.17 Wokspace analysis for the second position .. 61

Figure 5.18 End-effector positions ... 61

Figure 5.19 Joint angles ... 61

Figure 5.20 Workspace analysis for the third postion.. 62

Figure 5.21 End-effector positions ... 62

Figure 5.22 Joint Angles .. 62

Figure 5.23 Workspace analysis for the fourth position .. 62

Figure 5.24 End-effector position .. 63

Figure 5.25 Joint Angles .. 63

Figure 5.26 First Joint Motion from First Position to Second Position 78

Figure 5.27 Position Change Graph ... 78

Figure 5.28 First to Second Position .. 79

Figure 5.29 Second to Third Position .. 79

Figure 5.30 Third to Fourth Position ... 80

Figure 5.31 Stop Motion of the Robot Arm ... 80

Figure 5.32 SolidWorks Data Entries .. 80

Figure 5.33 SolidWorks Data Entries for other joints ... 81

Figure 5.34 First Joint Velocity From First Position to Second Position 81

file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111436
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111437
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111438
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111439
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111440
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111441
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111442
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111443
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111444
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111445
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111446
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111447
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111448
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111449
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111450
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111451
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111452
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111453

x

Figure 5.35 Constant Velocity of the Second and Third Position Change 82

Figure 5.36 Decrease to the ‘0’ Velocity ... 82

Figure 5.37 Acceleration Change of the Figure 5.28 ... 82

Figure 5.38 Second Joint From First Position to Second Position 83

Figure 5.39 SolidWorks Motion of the Figure 5.38 ... 83

Figure 5.40 Third Joint From First Position to Second Position 83

Figure 5.41 SolidWorks Motion Data of the Figure 5.40 .. 84

Figure 5.42 Fourth Joint From First Position to the Second Position 84

Figure 5.43 SolidWorks Motion Data of Figure 5.42 .. 84

Figure 5.44 Data Entry in Matlab as Polynomial Function 85

Figure 5.45 Path Drawing of our Robot Design for Four Position …………………85

Figure 5.46 The Pole Position to Second Position SolidWorks Simulation 86

Figure 5.47 The Second Position to Third Position SolidWorks Simulation 86

Figure 5.48 The Third Position to Fourth Position SolidWorks Simulation 86

Figure 5.49 The Last Position SolidWorks Simulation .. 87

Figure 5.50 Initial position of the robot arm .. 87

Figure 5.51 Second Position of the robot arm ... 88

Figure 5.52 Final Position of the robot arm ... 88

file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111458
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111466
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111467
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111468
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111469
file:///C:/Users/alpayt/Desktop/Master_Thesis/Alpay_Toprak-Master_Thesis_Final_Stage.docx%23_Toc144111470

xi

List of Tables

Table 1.1 DH Table ... 9

xii

List of Abbreviations

IKC Izmir Katip Celebi University

DoF Degree of Freedom

xiii

List of Symbols

θ Joint Angle

α Torsion Angle

S Joint Offset

a Length of the Link

1

1 Introduction

In recent years, the field of robotics has made incredible strides, changing numerous

sectors and pushing the limits of human capability. Mobile serial robots have become

a dynamic and adaptable solution in this field, enabling detailed movements and

complex operations in a range of settings. Parallel to this, a paradigm change has been

brought about by the Internet of Things (IoT), which connects systems and gadgets in

novel ways. Intelligent and remote-controlled robotic systems have been made

possible by the fusion of robotics and the internet of things (IoT).

This thesis aims to explore the complexities of designing and developing a compound

mobile serial robot, powered by a remote control C# WinForm Desktop application.

The MQTT (Message Queuing Telemetry Transport) protocol's integration is crucial

since it will allow for flawless coordination and communication between the robot and

its control system. The robot may be remotely controlled while enabling real-time data

interchange and decision-making processes by taking advantage of this protocol's

possibilities. Importantly, the Raspberry Pi will act as the system's main computer as

client, controlling the robot and its control application with the connectivity and

processing capacity as needed.

The compound mobile serial robot, which combines the benefits of mobility and serial

manipulators, provides a revolutionary approach to robotics. The robot can carry out a

variety of duties thanks to its special combination, including negotiating challenging

terrain, handling objects and inspection of them and performing accurate moves in

various environments. The C# program also offers a simple and easy-to-use interface

for controlling the robot's functions and motions remotely without being same network

in safe, additionally automatized calculation and control of the servo motors by the

tool. Users can enter desired angle to the servo motor, can calculate servo motor angles

by end-effector position of the gripper and run the robot arm joints with those angles.

2

The MQTT protocol is used to greatly increase the efficiency and dependability of

communication between the robot and the control system. The publish-subscribe

architecture of the protocol allows for seamless data transmission and command

execution between the robot and the control application. One of the most crucial points

is that it offers a secure workplace for challenging tasks.

In this thesis, all the different aspects of designing and creating the compound mobile

serial robot will be explored. The hardware components, mechanical design,

workspace, kinematics, and dynamic analysis of the robot will be examined.

Additionally, Raspberry Pi's computational capability and its interoperability with

communication, actuator, and communication modules will also be analyzed. The

software implementation, based on the creation of the C# remote control application

and the integration of the MQTT protocol for fluid communication using the Python

language for servo motor control on Raspberry Pi, will be studied.

Figure 1.1 MQTT protocol overview

3

The findings of this study will develop robotic devices that can be controlled remotely

and their intelligence and advantages. The MQTT protocol and Raspberry Pi, along

with the compound mobile serial robot, have the potential to transform sectors like

manufacturing, logistics, space sciences, bomb disposal areas. This thesis intends to

inspire additional ideas and direct future research in the area of intelligent and remotely

operated robotic systems by pushing the boundaries of robotics and utilizing the

capabilities of the Raspberry Pi. The publication of the written thesis was presented at

the 4. Baskent International Conference on Multidisciplinary Studies, and the abstract

of the thesis is included in the published book[1].

1.1 Literature Review & Research and Analysis

1.1.1 Remote Control of Robot Arm with five DoF

Explains whole process of making a system for remote control of a robot arm with five

DOF[2]. Serial RS-232 protocol is between PC and Microcontroller, and this

communication is used to operate the arm. Uses TCP/IP protocol for remote control

provides communication between server and client computers and sends information

of position of robot arm. GUI is implemented in MATLAB for user interaction.

For every degree of freedom two pins of microcontroller and two relays are assigned

(pins RD0 and RD1 for base, RD2 and RD3 for shoulder, RD4 and RD5 for elbow,

RD6 and RD7 for wrist and RC0 and RC1 for fist).

Depending on the state of two pins, there are four situations:

• If both pins are low, two relays controlled by them are open and motor of the

appropriate DOF is not running;

• if one pin is high and another is low, current flows in one direction and motor

is running in appropriate direction;

• for opposite state of pins, motor is running in opposite direction;

• 'forbidden combination' is when both pins are high, because then both relays

are active and source is short circuited.

A microcontroller were used to establish a communication with the server PC. The

used communication is the serial communication RS-232. Serial communication is the

4

most common low-level. To establish communication via ETHERNET, Real VNC

program and MATLAB Server are used. Real VNC program is used to obtain visual

feedback by camera, and MATLAB Server is used For transmission of control

messages from client PC to server PC. The communication was established through

MATLAB using two m-files. First m-file creates serial port and configures its

properties. The communication between the server PC and the microcontroller is

realized using second m-file. In this m-file, function was created to collect data set by

user inside GUI. The user monitor movement of robot arm by camera. GUI is

implemented in MATLAB as show below. TCP/UDP/IP toolbox is used for establish

connection between server and client, VNC server also was used to transmit visual

feedback.

Figure 1.2 GUI for the researched project

1.1.2 Multi-sensor based glove control of industrial mobile robot

arm

Performance and efficiency are more safe than an actual human performing the task

especially in dangerous environments. The aim of this task is to ease an operation's

complexity and hazardousness by only using a single hand to control a mobile robot

with a 6-axis robotic arm[3]. Both mobile robot and robotic arm can be controlled

wirelessly using a wearable data glove that is equipped with multiple sensors and a

microcontroller.

5

The payload (robot arm) must be carefully placed at the top of the mobile robot in

between its right and left wheels. The pressure sensitive sensor, flex bending sensor,

inertial sensor and Arduino mini is used in the glove.

Figure 1.3 Hand controller of the robot

The mode selection is switched according to the hand action measured by the inertial

sensor IMU, and the signals of the pressure and bending sensors on the data gloves

respectively control various instructions action of the vehicle mode and the robot arm

mode.

Figure 1.4 Overview of the article

1.1.3 Wireless Network for Mobile Robot Applications

The idea of a wireless network for information exchange between mobile robot nodes,

which can be utilized for monitoring and control applications, is discussed in the

6

article[4]. The primary goal is to decrease the amount of energy and computational

power used by robot nodes. A central host computer that can be linked to a cloud

network is outfitted with sensors and communication gear to collect data from each

node and transfer it to it. A Wireless Sensor Network (WSN) is the term used to

describe this system. In order to attain the desired efficiency, the study underlines the

significance of employing appropriate communication protocols. The suggested

method transfers data between networked nodes using the MQTT (MQ Telemetry

Transport) protocol.

The article describes how communication is organized amongst the nodes and outlines

how the system is verified through message exchange between the nodes and the

central system. The main reason for deploying networked mobile robots is to handle

difficult-for-people jobs that are complex and potentially dangerous, like air

monitoring, radiation from nuclear power plant failures, and land pollution assessment.

In conclusion, the article concludes with a proposal for a wireless network for

applications involving mobile robots, highlighting the usage of the MQTT protocol for

effective data transfer between networked nodes. The objective is to use a grid of

networked mobile robots to provide cost- and energy-efficient monitoring and control

applications.

1.1.4 Finger Robotic control use M5Stack board and MQTT

Protocol based

The study on using the MQTT protocol and the M5Stack board to remotely control a

robotic hand's finger is presented in the paper. The goal of the project is to create

remote control technology that will enable robotic fingers to perform various

activities, like pressing buttons and adjusting volume. Servo angles are represented

by values x and y or 1 and 2, and the MQTT protocol simplifies communication. For

operating the robotic finger and using Python and MQTT Brokers to broadcast and

subscribe to data, the study uses blockly programming. The WiFi-enabled M5Stack

board acts as the platform for controlling the finger robot. Additionally, the study

examines aspects like power usage, security, and data transmission, illustrating finger

movement instances and the effects of interference on data transmission.

7

Figure 1.5 Architecture Network Design of this research

The use of inverse kinematics for robotic finger control and the MQTT protocol for

communication are the two primary topics which are taken into account for this

thesis to take as an reference of the paper. Here is a more thorough breakdown of

these elements:

a. Inverse Kinematics for Robotic Finger Control:

To demonstrate finger motion, it proposes the planar two-link manipulator model.

The foundation for calculating the joint angles (1 and 2) of the robotic finger is

provided by the forward kinematics equations, which are represented by x and y

coordinates. The study illustrates the relationship between these equations and finger

movement in the planar space.

b. MQTT Protocol for Communication:

The research uses the MQTT (Message Queuing Telemetry Transport) protocol to

make it easier for the robotic finger and distant gadgets to communicate. A well-

liked IoT (Internet of Things) protocol called MQTT is well-known for its

effectiveness and simplicity. Using MQTT Brokers, which serve as a middleman for

data exchange between publishers (who transmit data) and subscribers (who receive

data), is a part of it.

The M5Stack board, which has an ESP8266 WiFi module and is MQTT compatible,

will be used in the study's configuration. The M5Stack board serves as the robotic

finger's controller and talks with MQTT Brokers to transfer data.

8

1.2 Project Design Processes

a. Job Definition and Task of the Project

b. Conceptual Design

c. Kinematic Analysis

i. Direct Analysis

ii. Inverse Analysis

iii. Jacobian Analysis

d. Dynamic Analysis

i. Forward Analysis

ii. Backward Analysis

iii. Torque Analysis

e. Material, Hardware Selection and Integration

f. Software Development

g. Testing and Evaluation

1.3 Job Definition and Task of the Project

The robot has the benefit of being serial and mobile compound, in addition to allowing

safe and effective use in numerous areas with remote control. This remote control can

be assigned as scheduled tasks and perform certain tasks automatically thanks to the

WinForm C# Tool features.

The robot will basically be based on mechanical or any type of part examination and

analysis it remote or difficult terrains, with the integration of artificial intelligence and

part recognition by the Raspberry Pi. The parts can be picked an place, explosive,

dangerous or can be worked at any point that is closed to human access.

Main goal will be to pick a part from a certain point, define it, place and drop it to a

different point automatically and handle all of these tasks remotely.

9

2 Design and Analysis of the Serial

Robot

2.1 Conceptual Design

Robot design have been done on SolidWorks. The robot has the structure with 4 DoF.

The kinematic structure of the serial arm is the same as one of the traditional industrial

4-DoF robots. All joints are revolute joint in the robot design. Table-1 shows DH table

of the serial arm and Z axis means the rotation axis of joint.

Table 1.1 DH Table

i ai-1,i αi-1,1 Si Qi

1 a0,1 α0,1 S1 Q1

2 a1,2 α1,2 S2 Q2

3 a2,3 α2,3 S3 Q3

4 a3,4 α3,4 S4 Q4

Figure 2.1 Conceptual Design DH Parameters

10

Length of link (a): It is determined as the distance measured between the mutual

perpendiculars axis.

Torsion angle (α): It is the angle formed between the orthogonal. Projections of along

the pivot axes in a plane perpendicular to the usual normal.

Joint. Offset (S): Length of connections of the normal perpendicular to the joint axis.

Joint. Angle (θ): The angle among the orthogonal. Projections which is normal

perpendicular to the. Plane perpendicular to the pivot axes.

The parameters required for the table are defined by making measurements of the

drawing.

Figure 2.2 Detailed Mechanical Design of Robot in SolidWorks

In this final design of the serial arm robot there were some issues with the production.

Linkages are restructured according to laser cutting necessities.

11

For laser cutting process, robot arm design is restructed in AutoCAD according to laser

cutting production methods. This is shown below.

2.2 Kinematic Analysis

Robot kinematics is the study of the motion of robots. In a kinematic analysis, the

position, velocity and acceleration of all connections are calculated regardless of the

forces that cause this motion. Robot kinematics is about redundancy, collision

avoidance and singularity avoidance. When dealing with the kinematics used in robots,

a reference frame assigns each part of the robot, and so a serial arm robot can have

many individual frames assigned to each moving part.

There are two separate problems to be solved in the kinematic analysis of the

manipulator position: direct kinematics and inverse kinematics, which are presented

in the sections in below.

Figure 2.4 AutoCAD drawing by part Figure 2.3 AutoCAD Overall View

12

2.2.1 Workspace Analysis with Matlab Simulation in Simulink

Matrices were defined in the Matlab. Matrix 𝑇0 4 has been found according to the

defined matrices. Then parametrical values of our matrices were entered. For finding

workspace of the system Q angle values are assigned randomly with command of :

𝑄İ=(-6.28*rand(i))

Random angle values given in matlab as :

q1=(-6.28*rand(1)) q2=(6.28*rand(1)) q3=(-6.28*rand(1)) q4=0

Example of finding 𝑇𝑖−1
𝑖 matrices in matlab is shown as:

% T01

t01transx = [1 0 0 a01; 0 1 0 0; 0 0 1 0; 0 0 0 1]

t01rotx = [1 0 0 0; 0 cos(a1) -sin(a1) 0; 0 sin(a1) cos(a1) 0; 0 0 0 1]

t01transz = [1 0 0 0; 0 1 0 0; 0 0 1 s1; 0 0 0 1]

t01rotz = [cos(q1) -sin(q1) 0 0; sin(q1) cos(q1) 0 0 ;0 0 1 0;0 0 0 1]

T01=t01transx*t01rotx*t01transz*t01rotz

After that 𝑇0 4 were found according to defined matrices as:

𝑇04 = 𝑇01 ∗ 𝑇12 ∗ 𝑇23 ∗ 𝑇34 (2.1)

Finally plot command of position points were entered which are x, y and z. ‘’hold on’’

command was used since there is more than one value in the chart.

x=T04(1,4) y=T04(2,4) z=T04(3,4) scatter3(x,y,z) hold on

13

This command were executed many times and workspace is calculated.

The SolidWorks design was transferred to the matlab simulation for checking positions

of the robot arm with respect to the changement of angle values of linkages. Simple

sections of the simulation model of our robot arm are shown.

Figure 2.5 Workspace Analysis Result

Figure 2.6 Section from the Matlab Simulation

14

After the simulation of the model has started robotic design can be seen in the Matlab.

Then the control model were handled for linkage joint angels.

Angle value of the linkage can be controlled by changing the slider gain.

Figure 2.7 Slider Gain for Preparing Angle Value of the Link

Figure 2.8 30 Degree Slider Gain For Preparing Angle Value of Link

Figure 2.9 30 Degree Slider Gain of Robot Link

15

2.2.2 Forward Kinematics (Direct Task)

In forward kinematics, the length of each link and the angle of each joint is given and

I have to calculate the position of any point in the work volume of the robot.

Direct kinematics involves solving the forward transformation equation to find the

location of the hand in terms of the angles and displacements between the links.

Denavit-Hartenberg (DH) method uses the four parameters including ai-1,i,αi-1,i, Si and

θi, which are the link length, link twist, link offset and joint angle, respectively.

Transformation matrices will be used as a method for making our direct task.

Transformation matrices are initially created as Ttx , Trx , Ttz , Trz . These transformation

matrices should be created with their individual models. These models are shown

below.

Transformation matrices of x axes:

Ttx = (

1 0 0 𝑎𝑖−1,𝑖
0 1 0 0
0 0 1 0
0 0 0 1

) Trx =(

1 0 0 0
0 𝐶𝑜𝑠(𝛼i-1,i) −𝑆𝑖𝑛(𝛼i-1,i) 0

0 𝑆𝑖𝑛(𝛼i-1,i) 𝐶𝑜𝑠(𝛼i-1,i) 0

0 0 0 1

)

Transformation matrices of z axes:

 Ttz= (

1 0 0 0
0 1 0 0
0 0 1 𝑆𝑖
0 0 0 1

) Trz=(

𝐶𝑜𝑠(𝑄𝑖) −𝑆𝑖𝑛(𝑄𝑖) 0 0
𝑆𝑖𝑛(𝑄𝑖) 𝐶𝑜𝑠(𝑄𝑖) 0 0
0 0 1 0
0 0 0 1

)

For finding 𝑻𝒊−𝟏
𝒊 matrix:

𝑇𝑖−1
𝑖= 𝑇𝑖−1

𝑖 tx 𝑇𝑖−1
𝑖rx 𝑇𝑖−1

𝑖 tz 𝑇𝑖−1
𝑖rz (2.1)

First transformation matrices need to be defined, 𝑇0 1 and then 𝑇0 1matrix will be

evaluated.

16

 𝑇0 1tx = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) 𝑇0 1rx =(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)

𝑇0 1tz =(

1 0 0 0
0 1 0 0
0 0 1 76
0 0 0 1

) 𝑇0 1rz=(

0.76402128 0.64519103 0 0
-0.6451910 0.76402128 0 0

0 0 1 0
0 0 0 1

)

𝑻𝟎 𝟏 = 𝑇0 1tx 𝑇0 1rx 𝑇0 1tz 𝑇0 1rz this matrix will be: (2.2)

𝑇0 1=(

0.764021 0.645191 0 0
-0.64519 0.764021 0 0

0 0 1 76
0 0 0 1

)

Then 𝑻𝟏 𝟐 matrix will be evaluated by using Eq 2.1 with same procedures.

𝑇1 2tx = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) 𝑇1 2rx=(

1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

)

𝑇1 2tz =(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) 𝑇1 2rz=(

0.47991728 -0.8773137 0 0
0.8773137 0.47991728 0 0

0 0 1 0
0 0 0 1

)

𝑇1 2 = 𝑇1 2tx * 𝑇1 2rx * 𝑇1 2tz * 𝑇1 2rz this matrix will be: (2.3)

𝑇1 2 = (

0.479917 -0.87731 0 0
0 0 −1 0

0.877314 0.479917 0 0
0 0 0 1

)

17

After 𝑻𝟐 𝟑 matrix will be evaluated by using Eq 2.1 with same procedures.

𝑻𝟐 𝟑tx = (

1 0 0 137
0 1 0 0
0 0 1 0
0 0 0 1

) 𝑻𝟐 𝟑rx = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)

𝑻𝟐 𝟑tz =(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) 𝑻𝟐 𝟑rzm=(

0.0287939 0.9995853 0 0
-0.9995853 0.0287939 0 0

0 0 1 0
0 0 0 1

)

𝑻𝟐 𝟑 = 𝑻𝟐 𝟑tx * 𝑻𝟐 𝟑rx * 𝑻𝟐 𝟑tz * 𝑻𝟐 𝟑rz this matrix will be: (2.4)

𝑻𝟐 𝟑 = (

0.028794 0.999585 0 137
-0.99959 0.028794 0 0

0 0 1 0
0 0 0 1

)

After that 𝑻𝟑 𝟒 matrix will be evaluated by using Eq 2.1 with same procedures.

𝑻𝟑 𝟒tx = (

1 0 0 100
0 1 0 0
0 0 1 0
0 0 0 1

) 𝑻𝟑 𝟒rx = (

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

)

𝑻𝟑 𝟒tz = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) 𝑻𝟑 𝟒rz = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)

𝑻𝟑 𝟒 = 𝑻𝟑 𝟒tx * 𝑻𝟑 𝟒rx * 𝑻𝟑 𝟒tz * 𝑻𝟑 𝟒rz this matrix will be: (2.5)

𝑻𝟑 𝟒 = (

1 0 0 100
0 0 1 0
0 -1 0 0
0 0 0 1

)

18

Finally, the position values will be evaluated by using same equation with others.

𝑻𝟎 𝟒 = 𝑇0 1* 𝑇1 2* 𝑻𝟐 𝟑* 𝑻𝟑 𝟒 this matrix will be:

(2.6)

𝑇0 4= (

0.680566 0.645191 0.347215 118,29
-0.57472 0.764021 -0.29321 -99.892
-0.45446 0 0.890769 150.7463

0 0 0 1

)

Evaluation of matrix is done that will give the position vectors of the end effector. This

matrix called as final transformation matrix it is shown in Fig. 3

So the robot arm positions will be:

x = 118.29 mm y = -99.89 mm z =150.74mm

It was checked in the SolidWorks with initial design of the robot.

Figure 2.10 Model of transformation matrix

Figure 2.11 Position analysis in SolidWorks with conceptual design

19

When the desired position values, defined using SolidWorks measurements, were

checked and the position values obtained through direct task evaluation using the

transformation matrices method were evaluated, it was observed that the position

values were identical. Thus, the direct task was successfully performed.

In summarize, the desired angles of the robotic arm must be entered into SolidWorks

in order to determine position values. The SolidWorks position vectors should then be

checked. The next step is to carry out the direct task using the transformation matrices

approach, which calls for an understanding of the robotic arm's Denavit-Hartenberg

(DH) characteristics. Comparison between the two sets of position values is necessary.

Microsoft Excel macro has created to perform those procedures.

Figure 2.12 Transformation matrices method in Microsoft Excel

After all of those calculations are completed in the mathematic tool and Microsoft

Excel, C# tool has been developed and forward kinematics has implemented into it.

Thanks to the tool there is no need to define any other equation or use any external

item to calculate robot position and control it with the inverse kinematics.

All matrices are defined in the tool, and each formulations for forward kinematics

was followed with dynamic parameters. ForwardKinematics function were

Figure 2.13 Transformation matrix of final position of the robotic arm

20

developed for this purpose, a part of the code snippet for matrix multiplication and

matrix declaration and UI of the tool with forward kinematics can be seen below.

try
{
 int rowA = firstMatrix.GetLength(1);
 int columnA = firstMatrix.GetLength(0);
 int rowB = secondMatrix.GetLength(1);
 int columnB = secondMatrix.GetLength(0);
 double temp = 0;
 double[,] finalMatrix = new double[rowA, columnB];
 for (int i = 0; i < rowA; i++)
 {
 for (int j = 0; j < columnB; j++)
 {
 temp = 0;
 for (int k = 0; k < columnA; k++)
 {
 temp += A[i, k] * B[k, j];
 }
 finalMatrix[i, j] = temp;
 }
 }

 return finalMatrix;
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex.Message.ToString());
 double[,] nullMatrice = new double[0,1];
 return nullMatrice;

 }

double[,] translationXZeroOne = new double[4, 4];
translationXZeroOne[0, 0] = 1;
…
translationXZeroOne[3, 3] = 1;

double[,] rotationXZeroOne = translationXZeroOne;
double[,] translationZZeroOne = new double[4, 4];
translationZZeroOne[0, 0] = 1;
…
translationZZeroOne[3, 3] = 1;

double[,] rotationZZeroOne = new double[4, 4];
rotationZZeroOne[0, 0] = Math.Cos(Math.PI * firstAngle / 180.0);
…
rotationZZeroOne[3, 3] = 1;

double[,] firstResult = MultiplyMatrix(translationXZeroOne,
rotationXZeroOne);
double[,] secondResult = MultiplyMatrix(firstResult,
translationZZeroOne);
double[,] finalResultTZeroOne = MultiplyMatrix(secondResult,
rotationZZeroOne);

21

Figure 2.14 Forward & Inverse Kinematics Calculation

2.2.3 Inverse Kinematics

Inverse kinematics is the opposite of forward kinematics. In inverse kinematics, the

length of each link and position of the point in work volume is given and the angle of

each joint has to be calculated.

Inverse kinematics involves solving the inverse transformation equation to find the

relationships between the links of the manipulator from the location of the hand in

space. This is when you have a desired end effector position, but need to know the

joint angles required to achieve it the inverse position kinematics solves the following

problem: end effector pose, what are the corresponding joint positions?" In contrast

to the forward problem, the solution of the inverse problem is not always unique: the

same end effector pose can be reached in several configurations, correspond position

vectors.

Inverse kinematics is done in modern technical computing program. This program is

used since it gives possibility to make matrix computing with parametric values.

22

Equations are started to use by defining the matrices of 𝑇0 1 as :

1

0T 𝑡𝑥 = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) 1

0T 𝑟𝑥 = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)

1

0T 𝑡𝑧 = (

1 0 0 0
0 1 0 0
0 0 1 76
0 0 0 1

)

1

0T 𝑟𝑧 = (

𝐶𝑜𝑠[𝑄1] −𝑆𝑖𝑛[𝑄1] 0 0

𝑆𝑖𝑛[𝑄1] 𝐶𝑜𝑠[𝑄1] 0 0
0 0 1 0
0 0 0 1

)

𝑻𝟎 𝟏 = 𝑇0 1tx * 𝑇0 1rx * 𝑇0 1tz* 𝑇0 1rz

(2.7)

𝑇0 1 = (

𝐶𝑜𝑠[𝑄1] −𝑆𝑖𝑛[𝑄1] 0 0

𝑆𝑖𝑛[𝑄1] 𝐶𝑜𝑠[𝑄1] 0 0
0 0 1 76
0 0 0 1

)

As shown in above all of the rest matrices (𝑇0 1, 𝑇1 2, 𝑻𝟐 𝟑, 𝑻𝟑 𝟒) can be found with

same formula. 𝑻𝟎 𝟒 should be found with below formula.

𝑻𝟎 𝟒 = 𝑇0 1 𝑇1 2 𝑻𝟐 𝟑 𝑻𝟑 𝟒

(2.8)

Whenever all matrices are found, left side of the equation should be found by

multiplying inverse of the 𝑇0 1.

T1left = Inverse[𝑇0 1] 𝑻𝟎 𝟒 (2.9)

Eq𝑙𝑒𝑓𝑡 = (

𝑋𝑋𝐶𝑜𝑠[𝑄1] + 𝑋𝑌𝑆𝑖𝑛[𝑄1] 𝑌𝑋𝐶𝑜𝑠[𝑄1] + 𝑌𝑌𝑆𝑖𝑛[𝑄1] 𝑍𝑋𝐶𝑜𝑠[𝑄1] + 𝑍𝑌𝑆𝑖𝑛[𝑄1] 𝑃𝑋𝐶𝑜𝑠[𝑄1] + 𝑃𝑌𝑆𝑖𝑛[𝑄1]

𝑋𝑌𝐶𝑜𝑠[𝑄1] − 𝑋𝑋𝑆𝑖𝑛[𝑄1] 𝑌𝑌𝐶𝑜𝑠[𝑄1] − 𝑌𝑋𝑆𝑖𝑛[𝑄1] 𝑍𝑌𝐶𝑜𝑠[𝑄1] − 𝑍𝑋𝑆𝑖𝑛[𝑄1] 𝑃𝑌𝐶𝑜𝑠[𝑄1] − 𝑃𝑋𝑆𝑖𝑛[𝑄1]
𝑋𝑍 𝑌𝑍 𝑍𝑍 −76 + 𝑃𝑍
0 0 0 1

)

Then the right side of the equation should be calculated without multiplying matrix

because it was multiplied by left side of the equation with inverse of this matrix. So, it

23

will be simplified in right side if it is multiplied with inverse of it because when it was

multiplied inverse matrix of and matrix, unit matrix will be calculated.

T1right = 𝑇1 2 𝑻𝟐 𝟑 𝑻𝟑 𝟒

(2.10)

Eq𝑟𝑖𝑔ℎ𝑡 = (

𝐶𝑜𝑠[𝑄2 + 𝑄3] 𝐶𝑜𝑠[𝑄4] −𝐶𝑜𝑠[𝑄2 + 𝑄3] 𝑆𝑖𝑛[𝑄4] −𝑆𝑖𝑛[𝑄2 + 𝑄3] 137𝐶𝑜𝑠[𝑄2] + 100𝐶𝑜𝑠[𝑄2 + 𝑄3]

𝑆𝑖𝑛[𝑄4] 𝐶𝑜𝑠[𝑄4] 0 0

𝐶𝑜𝑠[𝑄4] 𝑆𝑖𝑛[𝑄2 + 𝑄3] −𝑆𝑖𝑛[𝑄2 + 𝑄3] 𝑆𝑖𝑛[𝑄4] 𝐶𝑜𝑠[𝑄2 + 𝑄3] 137𝑆𝑖𝑛[𝑄2] + 100𝑆𝑖𝑛[𝑄2 + 𝑄3]

0 0 0 1

)

After both sides of the equation is calculated, parameters should be found and then Q1

can be easily calculated.

3rd column and 2nd row from Fig.10 (Simplified version of left side of our equation)

and 3rd column and 2nd row again was taken as easiest equalities to start with.

This equation can be shown below.

𝑃𝑌𝐶𝑜𝑠[𝑄1] − 𝑃𝑋𝑆𝑖𝑛[𝑄1] = 0 (2.11)

PY and PX values can be found from Microsoft Excel table because that table

represents parametrical values of T04 matrix.

PY = -99 PX=118

Then Q1 can be calculated from this equation easily for solving this equation ‘Solve’

command in mathematica will be used as shown below.

𝑆𝑜𝑙𝑣𝑒[−99𝐶𝑜𝑠[𝑄1] − 118𝑆𝑖𝑛[𝑄1] == 0, 𝑄1] (2.12)

Q1 will be resulted in the mathematica as shown below.

𝑄1 = −𝐴𝑟𝑐𝑇𝑎𝑛 (
99

118
) = −0.70127 (2.13)

Q2 and Q3 values were calculated with 2 equations by 2 unknowns so below equations

were selected.

−76 + 150.31 = (136.5 + 100 𝐶𝑜𝑠[𝑄3])𝑆𝑖𝑛[𝑄2] + 100 𝐶𝑜𝑠[𝑄2]𝑆𝑖𝑛[𝑄3] (2.14)

24

−0.37227 = 𝐶𝑜𝑠[𝑄3]𝑆𝑖𝑛[𝑄2] + 𝐶𝑜𝑠[𝑄2]𝑆𝑖𝑛[𝑄3] (2.15)

With the “Solve” command of the tool by using already founded Q1, Q2 and Q3 are

calculated.

𝑄2 = 1.07024 𝑄3 = −1.542

For calculating Q4, 𝑇1 2 should be found with left and right equations, it was handled

as same with above and Q4 was calculated as 0.

In addition to the ForwardKinematics function, InverseKinematics function has been

also developed to handle inverse kinematics automatically and run servo motors

accordingly. Desired robot positions can be entered to the textboxes of the tool where

the end-effector should go, and joint angles will be calculated automatically, with the

“Run Robot” button it can be controlled. A part of the code snippet can be seen below

and UI can be checked from the Figure 2.14.

double firstAngleCalculation =
(double)Double.Parse(txtPosY.Text)/Double.Parse(txtPosX.Text);
double firstAngleCalculated = Math.Atan(firstAngleCalculation);

firstJoint.Text = ((180 / Math.PI) * firstAngleCalculated).ToString();

MathKernel mathKernel = new MathKernel();
var firstAngleToVar = firstAngleCalculated.ToString().Replace(',', '.');
var solveEquation = "Solve["+txtPosX.Text+"Cos["+ firstAngleToVar + "] +
"+ txtPosY.Text + "Sin["+ firstAngleToVar + "] == 137 Cos[Q2] + 100
Cos[Q2] Cos[Q3] - 100 Sin[Q2] Sin[Q3] && -76 + " + txtPosZ.Text+" ==
(136.5 + 100 Cos[Q3]) Sin[Q2] + 100 Cos[Q2] Sin[Q3] , {Q2 , Q3}]";
mathKernel.Compute(solveEquation);

string angleTwoPattern = @"Q2\s?\-\>\s?(.*?),";
string angleThreePattern = @"Q3\s?\-\>\s?(.*?)}";
string input = mathKernel.Result.ToString();
RegexOptions options = RegexOptions.Multiline;
var qTwoRadian = "";
var qTwoRadianCheck = "";
var counterCheck = 0;
var qThreeRadian = "";

foreach (Match m in Regex.Matches(input, angleTwoPattern, options))
{
qTwoRadianCheck = m.Groups[1].Value;
if (!qTwoRadianCheck.Contains("I"))
{
qTwoRadian = m.Groups[1].Value;
qThreeRadian = Regex.Matches(input, angleThreePattern,
options)[counterCheck].Groups[1].Value;
break;
}
counterCheck++;

25

}

double secondAnleCalculated = double.Parse(qTwoRadian,
CultureInfo.InvariantCulture);
double thirdAnleCalculated = double.Parse(qThreeRadian,
CultureInfo.InvariantCulture);

secondJoint.Text = ((180 / Math.PI) * secondAnleCalculated).ToString();
thirdJoint.Text = ((180 / Math.PI) * thirdAnleCalculated).ToString();

mathKernel.Dispose();

In summarize, both forward and inverse kinematics have been automatized and

calculated in the C# WinForm tool which was developed for this thesis. It was

investigated that those processes can be automatized and controlled, and combine with

the MQTT protocol opportunities for controlling remotely within even different

network and task automatization.

26

3 Jacobian and Dynamic Analysis of

the Robot

3.1 Jacobian Analysis

It is used when linkage is complicated. The joint angles change to approach the goal

position and orientation. Jacobian matrices are a super useful tool, and heavily used

throughout robotics and control theory. Basically, a Jacobian defines the dynamic

relationship between two different representations of a system. For example, if I have

a 2-link robotic arm, there are two obvious ways to describe its current position: 1- the

end-effector position and orientation which I will denote x, and 2- as the set of joint

angles which I will denote q. The Jacobian for this system relates how movement of

the elements of q causes movement of the elements of x. Jacobian can be thought as a

transform matrix for velocity. Formally, a Jacobian is a set of partial differential

equations:

𝒙
.
= 𝑱. 𝒒

.
 (3.1)

where 𝑥
.
 and 𝑞

.
represent the time derivatives of x and q. This tells that the end-effector

velocity is equal to the Jacobian, 𝐽, multiplied by the joint angle velocity.

3.1.1.1 Building the Jacobian

First, the relationship between the position of the end-effector and the robot’s joint

angles should be defined. Distances are known from the shoulder to the elbow, and

elbow to the wrist, as well as the joint angles, where the end-effector is relative to a

base coordinate frame should be figured out. Those forward transformation matrices

should be used.

That transformation matrices allow a given point to be transformed between different

reference frames. In this case, the position of the end-effector relative to the second

joint of the robot arm is known, but where it is relative to the base reference frame (the

first joint reference frame in this case) is of interest. So, the rotation part of this matrix

is straight-forward to define can be shown as.

27

𝑹𝟎 𝒊−𝟏 = (
a b c
d e f
g h i

)

The translation part of the transformation matrices is a little different than before

because reference frame 1 changes as a function of the angle of the previous joint’s

angles. From trigonometry, given a vector of length r and an angle q the x position of

the end point is defined r.cos(q), and the y position is r.sin(q). And the z position of

the end point is defined with offset of our robotic arm. It can be shown below.

𝒓𝑖−1
𝑖 = (

𝑎𝑖−1,𝑖𝐶𝑜𝑠(𝑄𝑖)

𝑎𝑖−1,𝑖𝑆𝑖𝑛(𝑄𝑖)

𝑆𝑖

)

Then zi-1 is a unit vector along ‘i’th joint axis, and *1

n

i p− is a vector defined from the

origin of the (i-1)th link frame.

zi-1 = 1

0

−iR (
0
0
1
) (3.2)

*1

n

i p− = 1

0

−iR 𝑟𝑖−1
𝑖 + *

n

i p (3.3)

Before these formulas are applied, a new Denavit-Hartenberg (DH) table should be

created for finding same positions where it was found in direct task before.

𝑇𝑖−1
𝑖= 𝑇𝑖−1

𝑖 tx * 𝑇𝑖−1
𝑖rx * 𝑇𝑖−1

𝑖 tz* 𝑇𝑖−1
𝑖rz (Eq. 1) formulation was used at this procedure

but now with respect to the new Denavit-Hartenberg table.

Figure 3.1 DH table for Jacobian Analysis

28

𝑇𝑖−1
𝑖= 𝑇𝑖−1

𝑖 tz* 𝑇𝑖−1
𝑖rz* 𝑇𝑖−1

𝑖 tx * 𝑇𝑖−1
𝑖rx formulation should be used with respect to this

formulation.

𝑻𝟎 𝟏 = 𝑇0 1tz 𝑇
0
1rz 𝑇

0
1tx 𝑇0 1rx this matrix will be: (3.4)

𝑇0 1=(

 Cos(Q1) 0 Sin(Q1) 0
Sin(Q1) 0 -Cos(Q1) 0
0 1 0 76
0 0 0 1

)

𝑇1 2 = 𝑇1 2tz * 𝑇1 2rz * 𝑇1 2tx * 𝑇1 2rx this matrix will be: (3.5)

𝑇1 2 = (

 Cos(Q2) -Sin(Q2) 0 137 Cos(Q2)
Sin(Q2) Cos(Q2) 0 137 Sin(Q2)
0 0 1 0
0 0 0 1

)

𝑻𝟐 𝟑 = 𝑻𝟐 𝟑tz * 𝑻𝟐 𝟑rz * 𝑻𝟐 𝟑tx * 𝑻𝟐 𝟑rx this matrix will be: (3.6)

𝑻𝟐 𝟑 = (

 Cos(Q3) -Sin(Q3) 0 100 Cos(Q3)
Sin(Q3) Cos(Q3) 0 100 Sin(Q3)
0 0 1 0
0 0 0 1

)

𝑻𝟑 𝟒 = 𝑻𝟑 𝟒tz * 𝑻𝟑 𝟒rz * 𝑻𝟑 𝟒tx * 𝑻𝟑 𝟒rx this matrix will be: (3.7)

𝑻𝟑 𝟒 = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)

29

𝑻𝟎 𝟒 = 𝑇0 1 𝑇1 2 𝑻𝟐 𝟑 𝑻𝟑 𝟒 this matrix will be: (3.8)

 𝑇0 4= (

0.680566 0.645191 0.347215 118.29
-0.57472 0.764021 -0.29321 -99.892
-0.45446 0 0.890769 150.7463

0 0 0 1

)

So, it can be easily seen that our final transformation matrix is the same which was

found in direct task analysis. This shows that the new Denavit-Hartenberg table was

created correctly, and proper equations was applied.

After finishing procedures of the new method of Denavit-Hartenberg solution

𝑅𝑖−1
𝑖matrices can be found. That matrices are the rotation matrix part of 𝑇0 1 2

1T 𝑻𝟐 𝟑

and

𝑻𝟑 𝟒

𝑅0 1= (
 Cos[Q1] 0 Sin[Q1]
 Sin[Q1] 0 -Cos[Q1]
0 1 0

)

For 2

0R and 3

0R matrices 2

0T and 3

0T
 matrices should be found. Because 2

0R and 3

0R

will be rotation matrices of 2

0T and 3

0T
 matrices. Those matrices can be found as same

what was done for 4

0T . One example can be seen on below.

Rotation matrices will be found as shown on below.

 𝑅0 2= (

 Cos(Q1) Cos(Q2) -Cos(Q1) Sin(Q2) Sin(Q1)

 Cos(Q2) Sin(Q1) -Sin(Q1) Sin(Q2) -Cos(Q1)
Sin(Q2) Cos(Q2) 0

)

𝑅0 3= (

 Cos(Q1) Cos(Q2 + Q3) -Sin(Q1) -Cos(Q1) Sin(Q2 + Q3)
 Cos(Q2 + Q3) Sin(Q1) Cos(Q1) -Sin(Q1)Sin(Q2 + Q3)

Sin(Q2 + Q3) 0 Cos(Q2 + Q3)
)

30

 i

i r1−

 variables should be also defined.

𝜞𝟎𝟏 = (
0
0
76
)

𝜞𝟏𝟐 = (
137𝐶𝑜𝑠[𝑄2]
137𝑆𝑖𝑛[𝑄2]

0

)

𝜞𝟏𝟐 = (
100𝐶𝑜𝑠[𝑄3]
100𝑆𝑖𝑛[𝑄3]

0

) 𝜞𝟑𝟒 = (
0
0
0
)

After finding those matrices below equation should be used.

*1

n

i p−

 = 1

0

−iR
𝒓𝒊−𝟏
𝒊 +

*

n

i p
 (3.9)

There should be started with giving i=4 and n always equal to 4 so the first formulation.

*

4

3 p = 3

0R
4

3r +
*

4

4 p (3.10)

Here
*

4

4 p = 0 𝒓3 4= 0 so it can be measured that
*

4

3 p = 0.

After finding
*

4

3 p matrix it should be given as i = 3 and *

3

2 p will be found.

*

4

2 p = 2

0R 𝒓2 3 +
*

4

3 p (3.11)

Here
*

4

3 p = 0 and 𝑟2 3 and 𝑅0 2 are also known as:

𝑅0 2 = (

 Cos(Q1) Cos(Q2) -Cos(Q1) Sin(Q2) Sin(Q1)
 Cos(Q2) Sin(Q1) -Sin(Q1) Sin(Q2) -Cos(Q1)

Sin(Q2) Cos(Q2) 0
)

After multiplying 𝑟2 3 and 𝑅0 3,
*

4

2 p can be found as:

*

4

2 p = (

100 𝐶𝑜𝑠[𝑄1] 𝐶𝑜𝑠[𝑄2 + 𝑄3]

100 𝐶𝑜𝑠[𝑄2 + 𝑄3] 𝑆𝑖𝑛[𝑄1]
100 𝑆𝑖𝑛[𝑄2 + 𝑄3]

)

31

*1

n

i p−

 = 1

0

−iR 𝑟𝑖−1
𝑖 +

*

n

i p
 formulation will be applied for finding *

4

1 p by

giving i=2:

*

4

1 p = 1

0R 𝑟1 2 +
*

4

2 p (3.12)

*

4

1 p = (

𝐶𝑜𝑠[𝑄1](137 𝐶𝑜𝑠[𝑄2] + 100 𝐶𝑜𝑠[𝑄2 + 𝑄3])

(137 𝐶𝑜𝑠[𝑄2] + 100 𝐶𝑜𝑠[𝑄2 + 𝑄3]) 𝑆𝑖𝑛[𝑄1]

137 𝑆𝑖𝑛 [𝑄2] + 100 𝑆𝑖𝑛[𝑄2 + 𝑄3]

)

With respect to the formulation if i=1 is given
*

4

1 p = *

4

0 p So *

4

0 p will be as same.

After finding all *1

n

i p− values as a vector defined from the origin of the (i-1)th link

frame zi-1 should be found which is a unit vector along ‘i’th joint axis.

𝑍0 = (
0
0
1
)

𝑍1 = 𝑅01. (
0
0
1
) = (

𝑆𝑖𝑛[𝑄1]
−𝐶𝑜𝑠[𝑄1]

0

) (3.13)

𝑍2 = 𝑅02. (
0
0
1
) = (

𝑆𝑖𝑛[𝑄1]
−𝐶𝑜𝑠[𝑄1]

0

) (3.14)

𝑍3 = 𝑅03. (
0
0
1
) = (

−𝐶𝑜𝑠[𝑄1] 𝑆𝑖𝑛[𝑄2 + 𝑄3]

−𝑆𝑖𝑛[𝑄1] 𝑆𝑖𝑛[𝑄2 + 𝑄3]

𝐶𝑜𝑠[𝑄2 + 𝑄3]

) (3.15)

All these desired matrices for building the final version of Jacobian matrix is defined

and calculated. Those needs to be built up as shown below:

J = [J1,J2,J3,J4]

Those J1,J2,J3,J4 matrices can be written individually by using the below model.

32

Ji =














−

−

−

1

*1

1

i

n

i

i

Z

PxZ
 for revolute joint

Cross products will be handled and Jacobian matrices will be found as shown below.

J1=

(

 -(137 Cos(Q2) + 100 Cos(Q2 + Q3)) Sin(Q1)
 Cos(Q1) (137 Cos(Q2) + 100 Cos(Q2 + Q3))

0
0
0
1)

J2=

(

 -Cos(Q1) (137 Sin(Q2) + 100 Sin(Q2 + Q3))
 -Sin(Q1) (137 Sin(Q2) + 100 Sin(Q2 + Q3))

 137 Cos(Q2) + 100 Cos(Q2 + Q3)
Sin(Q1)
-Cos(Q1)

0)

J3=

(

 -100 Cos(Q1) Sin(Q2 + Q3)
 -100 Sin(Q1) Sin(Q2 + Q3)

100 Cos(Q2 + Q3)
Sin(Q1)
-Cos(Q1)

0)

J4=

(

 -(137 Cos(Q2) + 100 Cos(Q2 + Q3)) Sin(Q1)
 Cos(Q1) (137 Cos(Q2) + 100 Cos(Q2 + Q3))

0
 -Cos (Q1) Sin(Q2 + Q3)
 -Sin(Q1) Sin(Q2 + Q3)

 Cos(Q2 + Q3))

3.2 Dynamic Analysis

In a dynamic model of a system there are two main aspects with which one is

concerned: motion and forces. The motion of a system is called its trajectory and

consists of a sequence of desired positions, velocities, and accelerations of some point

or points in the system. Forces are usually characterized as internal (or constraint)

forces and external (or applied) forces. The external forces are the ones which cause

motion. In robotics, a dynamic robot model usually describes relationships between

robot motion and forces causing that motion, so that given one of these quantities,

other one can be determined.

33

There are, therefore, the following problems to be considered forward Dynamics and

inverse Dynamics. In principle, solving forward or inverse dynamics for rigid-link

robot manipulators presents no difficulty.

A robot manipulator is just a system of rigid bodies, and the equations of motion of

such systems have been known for a long time. The real problem in robot dynamics is

a practical one, namely, that of finding formulations for the equations of motion that

lead to efficient computational algorithms. To derive these equations, I can use well

established procedures from classical mechanics such as those based on the equations

of Newton and Euler, Euler and Lagrange, Kane, etc.

The Newton and Euler method will be used to solve dynamic analysis [5].

3.2.1 Forward Dynamic Analysis

The Forward or direct dynamics problem is one where the forces which act on a robot

are given and the resulting motion will be solved. The importance of forward dynamics

in robotics stems mainly from its use in simulation. Simulation of robot motion is a

way of testing control strategies or manipulator designs prior to the expensive task of

working with the actual manipulator.

First, I started to compute angular velocity, angular acceleration, linear velocity, and

linear acceleration of each link in terms of its preceding link. These velocities can be

computed as starting at the first moving link and ending at end-effector link.

a) Angular Velocity Propagation

Due to serial construction of the manipulator, the angular velocity of link i relative to

link i-1 is equal to zi-1𝑄𝑖
,

for revolute joint, where zi-1 denotes a unit vector pointing

along the ith joint axes. Angular velocity of i link can be written as

𝜔𝑖= 𝜔𝑖−1+ zi-1𝑄𝑖
,

 (3.16)

𝑧0 = (
0
0
1
)

𝑅01 = (
𝐶𝑜𝑠[𝑄1] 0 𝑆𝑖𝑛[𝑄1]
𝑆𝑖𝑛[𝑄1] 0 −𝐶𝑜𝑠[𝑄1]
0 1 0

)

34

𝑧1 = 𝑅01 (
0
0
1
) (3.17)

After finding all of the Zi-1 matrices, below formula should be applied.

𝜔İ = 𝑍İ−1 𝑄𝑖𝑑 (3.18)

This will be applied from i=0 to i=4, after all of those are found it should be expressed

in the ith link frame with the below formula.

𝑤𝑖 𝑖= 𝑅𝑖 𝑖−1 (𝑤𝑖−1
𝑖−1+ 1

1

−

−

i

i z 𝑄𝑖
,

) (3.19)

First 𝑅𝑖 𝑖−1 should be defined Then 𝑧𝑖−1
𝑖−1 will be called as Znn. Angular velocities

of ith link frame will found as:

𝑅34𝑛 = (
𝐶𝑜𝑠[𝑄4] 𝑆𝑖𝑛[𝑄4] 0
−𝑆𝑖𝑛[𝑄4] 𝐶𝑜𝑠[𝑄4] 0

0 0 1

)

𝑍𝑛𝑛 = (
0
0
1
)

𝜔11 = 𝑅01𝑛. (𝑍𝑛𝑛 𝑄𝑑1)

𝜔22 = 𝑅12𝑛. (𝜔11 + 𝑍𝑛𝑛 𝑄𝑑2)

b) Angular Acceleration Propagation

That will be link i is obtained by using the below equation.

𝜔𝑖
.

= 𝜔𝑖−1
.

+ zi-1𝑄𝑖
..

+ 𝜔𝑖−1 × zi-1𝑄𝑖
,

 (3.20)

𝜔𝑖
.

 will be defined as Wd1 in mathematic tool. Below will be calculated.

𝜔𝑑1 = 𝑍0𝑄𝑑𝑑1

𝑍1𝑄𝑑2 = 𝑍1𝑄𝑑2

𝜔𝑑2 = 𝜔𝑑1 + 𝑍1. 𝑄𝑑𝑑2 + 𝐶𝑟𝑜𝑠𝑠 [𝜔𝑑1, 𝑍1𝑄𝑑2]

Then this should be expressed in the ith link frame.

𝜔𝑖
.

= 𝑅𝑖 𝑖−1 (𝜔𝑖−1
𝑖−1

.

+ zi-1𝑄𝑖
..

+ 𝜔𝑖−1
𝑖−1 X 1

1

−

−

i

i z 𝑄𝑖
,

) (3.21)

35

𝜔𝑑11 = 𝑅01𝑛. (𝑍𝑛𝑛𝑄𝑑𝑑1)

𝜔𝑑22 = 𝑅12𝑛. (𝜔𝑑11 + 𝑍𝑛𝑛 𝑄𝑑𝑑2 + 𝐶𝑟𝑜𝑠𝑠 [𝜔11, 𝑍𝑛𝑛 𝑄𝑑2])

𝜔d11, 𝜔d22, 𝜔d33 and 𝜔d44 angular acceleration were found as same as above.

c) Linear Velocity Propagation

It needs to be considered as if the ith joint is a revolute joint, link i does not translate

along the ith joint axis. Then the velocity can be written as:

𝑉𝑖 = 𝑉𝑖−1 + 𝜔𝑖 x 𝑟𝑖 (3.22)

First, 𝑟𝑖 should be defined to for the Eq 3.22:

𝑟2 = (
𝑎12 𝐶𝑜𝑠[𝑄2]
𝑎12 𝑆𝑖𝑛[𝑄2]

0

) 𝑟3 = (
𝑎23 𝐶𝑜𝑠[𝑄3]
𝑎23 𝑆𝑖𝑛[𝑄3]

0

)

Then linear velocity can be found by using Eq. 3.22 which can be shown as below:

𝑉1 = 𝐶𝑟𝑜𝑠𝑠[𝜔1, 𝑟1]

V2 = V1 + Cross [𝜔2, r2] same formula for the V3 and V4.

Then those again need to be expressed in the ith link frame as it was done before for

angular velocity and angular acceleration. This expression will be shown as:

=i

iV 𝑅𝑖 𝑖−1 (𝑉𝑖−1
𝑖−1+ 𝜔𝑖 𝑖 x 𝑟𝑖 𝑖) (3.23)

𝑟𝑖 𝑖 is defined as rii in mathematic tool for finding rii constant vector for a revolute joint.

These will be found as:

𝑟𝑖 𝑖 = (

𝑎𝑖
𝑆𝑖𝑆𝑖𝑛𝛼𝑖
𝑆𝑖𝐶𝑜𝑠𝛼𝑖

) (3.24)

Each of them was found parametrically and Eq 3.23 was applied for linear velocity ith

link.

𝑟11 = (
0
𝑆1
0
) 𝑟11 = (

𝑎12
0
0
) 𝑟33 = (

𝑎23
0
0
) 𝑟44 = (

0
0
0
)

36

𝑉11 = 𝐶𝑟𝑜𝑠𝑠 [𝜔11, 𝑟11]

𝑉22 = 𝑅12𝑛. 𝑉11 + 𝐶𝑟𝑜𝑠𝑠[𝜔22, 𝑟22] same formula for the V3 and V4.

d) Linear Acceleration Propagation

Linear acceleration of the frame i can be obtained by differentiating Eq3.24 with

respect to time. It will be shown as:

=iV
.

𝑉𝑖−1
.

+ 𝜔𝑖
.

x 𝑟𝑖 + 𝜔𝑖 𝑥 (𝜔𝑖 x 𝑟𝑖)

(3.25)

𝜔2𝑟2 = 𝐶𝑟𝑜𝑠𝑠[𝜔2, 𝑟2]

𝑉𝑑2 = 𝐶𝑟𝑜𝑠𝑠[𝜔𝑑2, 𝑟2] + 𝐶𝑟𝑜𝑠𝑠[𝜔2,𝜔2𝑟2]

𝜔3𝑟3 = 𝐶𝑟𝑜𝑠𝑠 [𝜔3, 𝑟3]

𝑉𝑑3 = 𝑉𝑑2 + 𝐶𝑟𝑜𝑠𝑠[𝜔𝑑3, 𝑟3] + 𝐶𝑟𝑜𝑠𝑠[𝜔3,𝜔3𝑟3]

𝜔3𝑟3 = 𝐶𝑟𝑜𝑠𝑠[𝜔4, 𝑟4]

Vd4 will be equal to Vd3 since 𝜔3r3 was found as 0.

These need to expressed ith link frame as same before for the angular velocity and

angular acceleration. This expression will be shown as:

𝑉𝑖
.

𝑖 = 1−i

iR 𝑉𝑖−1
𝑖−1

.

+ 𝜔𝑖 𝑖

.

x 𝑟𝑖 𝑖 + 𝜔𝑖 𝑖 𝑥 (𝜔𝑖 𝑖 x 𝑟𝑖 𝑖) (3.26)

𝑉𝑑22 = 𝐶𝑟𝑜𝑠𝑠[𝜔𝑑22, 𝑟22] + 𝐶𝑟𝑜𝑠𝑠[𝜔22,𝜔22𝑟22]

𝜔3𝑟33 = 𝐶𝑟𝑜𝑠𝑠[𝜔33, 𝑟33]

𝑉𝑑33 = 𝑅23𝑛. 𝑉𝑑22 + 𝐶𝑟𝑜𝑠𝑠[𝜔𝑑33, 𝑟33] + 𝐶𝑟𝑜𝑠𝑠[𝜔33,𝜔33𝑟33]

e) Linear Acceleration of the Center of Mass

=ci
iV

.

𝑉𝑖
.

𝑖+ 𝜔𝑖 𝑖

.

𝑥 𝑟𝑖 𝑐𝑖 + 𝜔𝑖 𝑖 𝑥 (𝜔𝑖 𝑖
x 𝑟𝑖 𝑐𝑖) (3.27)

37

First, 𝑟𝑖 𝑐𝑖, position vector of the center of mass of the link with i link frame is shown:

𝑟𝑖 𝑐𝑖 = −𝒂𝒊/𝟐(
𝑪𝒐𝒔𝑸𝒊
𝑺𝒊𝒏𝑸𝒊
𝟎

)

Then, Eq 3.27 will be applied as shown below.

𝜔22𝑐22 = 𝐶𝑟𝑜𝑠𝑠[𝜔22, 𝑟𝑐22]

𝑉𝑑𝑐22 = 𝐶𝑟𝑜𝑠𝑠[𝜔𝑑22, 𝑟𝑐22] + 𝐶𝑟𝑜𝑠𝑠[𝜔22,𝜔22𝑟𝑐22]

𝑊33𝑟33 = 𝐶𝑟𝑜𝑠𝑠[𝜔33, 𝑟𝑐33]

𝑉𝑑𝑐33 = 𝑉𝑑𝑐22 + 𝐶𝑟𝑜𝑠𝑠[𝜔𝑑33, 𝑟𝑐33] + 𝐶𝑟𝑜𝑠𝑠[𝜔33,𝜔33𝑟𝑐33]

Since the 𝜔44rc44 equals to zero, Vdc44 will be as same with Vdc33.

f) Acceleration of the Gravity

As a final, the acceleration of gravity is transformed from the (i-1) link frame to the ith

in frame as:

=gi

𝑅𝑖 𝑖−1 𝑔𝑖−1 (3.28)

𝑔1 = 𝑅01𝑛. (
0
0
𝑔
)

𝑔2 = 𝑅12𝑛. 𝑔1

g3 and g4 will be found with the same formula as above.

3.2.2 Backward Dynamic Analysis

When the velocities and accelerations of the links are found, the joint forces can be

computed at a time starting from the end-effector link and ending at the base link.

First inertia force exerted at the center of mass link i should be computed as:

 𝑓𝑖 𝑖
∗= 𝑚𝑖 + ci

i

V
.

 (3.29)

38

𝑓𝑠11 = −𝑚1𝑉𝑑𝑐11

𝑓𝑠22 = −𝑚2𝑑𝑐22

Inertia forces of the fs11, fs22, fs33 and fs44 will be found as same shown above.

After finding inertia forces of each i link. System should be solved recursively,

starting from the end-effector link. For the end-effector link, represent the end-

effector output force. This output force is considered and defined as below:

𝑓045 = (
0
0

−𝑚𝑔
)

After defining the output force, recursive function equation should be defined.

𝑓𝑖 𝑖,𝑖−1= 𝑓𝑖 𝑖+1,𝑖- im 𝑔𝑖 - 𝑓𝑖 𝑖
∗ (3.30)

When the reaction forces are computed in the ith link frame, these are converted into

the (i-1)th link by following transformations:

𝑓𝑖−1
𝑖,𝑖−1= i

i R1− 𝑓𝑖 𝑖,𝑖−1 (3.31)

As a result of the definition of the all these computing steps it should be started by

finding an external output force of end-effector as:

𝑓445 = 𝑅04. 𝑓045

𝑓454 = −𝑓445

Finally, all of those should be calculated recursively, finding joint forces can be shown

as:

𝑚4𝑔4 = 𝑚4 𝑔4

𝑓443 = 𝑓454 – 𝑚4𝑔4 – 𝑓𝑠44

𝑓343 = 𝑅34. 𝑓443

39

Same formulas should be applied until the f110 joint force, and then, as same

processes should be implemented for the inertia moment exerted at the center of the

mass of the link i:

𝑛𝑖 𝑖
∗ = - i

i I 𝜔𝑖 𝑖

.

- 𝜔𝑖 𝑖𝑥 (i

i I 𝜔𝑖 𝑖) (3.32)

For finding inertia moment of the system inertia matrix of link i about its center of

mass coordinate frame should be defined as:

𝐼𝑖 𝑖= 𝑚𝑖𝑎𝑖
2/12 (

0 0 0
0 1 0
0 0 1

) (3.33)

By using the Eq. 3.22 inertia moments of center of mass of link i can be calculated.

𝑛𝑠11 = −𝐶𝑟𝑜𝑠𝑠[𝜔11, 𝐼11𝜔11]

𝐼22𝜔22 = 𝐼22. 𝜔22

𝐼22𝜔𝑑22 = 𝐼22. 𝜔𝑑22

𝑛𝑠22 = −𝐼22 . 𝜔𝑑22 – 𝐶𝑟𝑜𝑠𝑠[𝜔22, 𝐼22𝜔22]

𝐼33𝜔33 = 𝐼33. 𝜔33

The rest of the inertia moments will be found parametrically as same on above.

After finding the inertia moment of each i link. System should be resolved recursively,

starting from the end-effector link. For the end-effector link, 𝑛𝑖 𝑖+1,𝑖 represent the end-

effector output force. This output moment is considered as 0.

𝑛𝑖 𝑖,𝑖−1= 𝑛𝑖 𝑖+1,𝑖+ (𝑟𝑖 𝑖+ 𝑟𝑖 𝑐𝑖) 𝑥 𝑓𝑖 𝑖,𝑖−1 - 𝑟
𝑖
𝑐𝑖 x 𝑓𝑖 𝑖+1,𝑖- 𝑛𝑖 𝑖

∗ (3.34)

When the reaction moments are computed in the ith link frame, these are converted into

the (i-1)th link by following transformations:

𝑛𝑖−1
𝑖,𝑖−1= i

i R1− 𝑛𝑖 𝑖,𝑖−1 (3.35)

40

Finally, it can easily computed by keeping going these procedures.

𝑛443 = 𝐶𝑟𝑜𝑠𝑠[𝑟44𝑟𝑐44, 𝑓443] – 𝐶𝑟𝑜𝑠𝑠[𝑟𝑐44, 𝑓454] − 𝑛𝑠44

𝑛343 = 𝑅34. 𝑛443

𝑛332 = 𝑛343 + 𝐶𝑟𝑜𝑠𝑠[𝑟33𝑟𝑐33, 𝑓332] – 𝐶𝑟𝑜𝑠𝑠[𝑟𝑐33, 𝑓343] – 𝑛𝑠33

Joint moments have been calculated as same with the formulas and followings shown

in above until the n010.

3.2.3 Determination of the Torques of the Motors

Actuator torques or forces 𝑇𝑖, are obtained by projecting the forces of constraint onto

their corresponding joint axes, that can be shown as:

𝑇𝑖 =
T

ii

i n 1,

1

−

− 𝑧𝑖−1
𝑖−1 (3.36)

First torque values should be calculated parametrically. Then unknown values can be

entered by using the design values.

T1 = {−Sin[Q2]Sin[Q3](−
1

4
a12a23m3Qdd2 −

1

2
a12a23m4Qdd2 −

1

4
a232m3Qdd1Cos[Q2]Cos[Q3] −

1

2
a232m4Qdd1Cos[Q2]Cos[Q3] −

1

4
a12a23m3Qd12Cos[Q2]Sin[Q2] −

1

2
a12a23m4Qd12Cos[Q2]Sin[Q2] +

5

12
a232m3Qd1Qd2Cos[Q3]Sin[Q2] + a232m4Qd1Qd2Cos[Q3]Sin[Q2] +

5

12
a232m3Qd1Qd3Cos[Q3]Sin[Q2] + a232m4Qd1Qd3Cos[Q3]Sin[Q2] +

5

12
a232m3Qd1Qd2Cos[Q2]Sin[Q3] + a232m4Qd1Qd2Cos[Q2]Sin[Q3] +

5

12
a232m3Qd1Qd3Cos[Q2]Sin[Q3] + a232m4Qd1Qd3Cos[Q2]Sin[Q3] +

1

4
a232m3Qdd1Sin[Q2]Sin[Q3] +

1

2
a232m4Qdd1Sin[Q2]Sin[Q3] +

1

12
a232m3(Cos[Q3](Qdd1Cos[Q2] − Qd1Qd2Sin[Q2] − Qd1Qd3Sin[Q2]) −

(Qd1Qd2Cos[Q2] + Qd1Qd3Cos[Q2] + Qdd1Sin[Q2])Sin[Q3]) −

a23𝑔𝑚Sin[Q1]Sin[Q2 + Q3] + a23𝑔m4Cos[Q3]Sin[Q2]Sin[Q4] +

41

a23𝑔m4Cos[Q2]Sin[Q3]Sin[Q4]) + Cos[Q2](−
1

2
a122m3Qdd2 −

1

2
a122m4Qdd2 −

1

4
a122m2Qdd1Cos[Q2] −

1

2
a12a23m3Qdd1Cos[Q2]Cos[Q3] −

1

2
a12a23m4Qdd1Cos[Q2]Cos[Q3] +

5

12
a122m2Qd1Qd2Sin[Q2] −

1

2
a122m3Qd12Cos[Q2]Sin[Q2] −

1

2
a122m4Qd12Cos[Q2]Sin[Q2] +

a12a23m3Qd1Qd2Cos[Q3]Sin[Q2] + a12a23m4Qd1Qd2Cos[Q3]Sin[Q2] +

a12a23m3Qd1Qd3Cos[Q3]Sin[Q2] + a12a23m4Qd1Qd3Cos[Q3]Sin[Q2] +

1

12
a122m2(Qdd1Cos[Q2] − Qd1Qd2Sin[Q2]) +

a12a23m3Qd1Qd2Cos[Q2]Sin[Q3] + a12a23m4Qd1Qd2Cos[Q2]Sin[Q3] +

a12a23m3Qd1Qd3Cos[Q2]Sin[Q3] + a12a23m4Qd1Qd3Cos[Q2]Sin[Q3] +

1

2
a12a23m3Qdd1Sin[Q2]Sin[Q3] +

1

2
a12a23m4Qdd1Sin[Q2]Sin[Q3] −

a12𝑔𝑚Sin[Q1]Sin[Q2 + Q3] + a12𝑔m4Cos[Q3]Sin[Q2]Sin[Q4] +

a12𝑔m4Cos[Q2]Sin[Q3]Sin[Q4] + Cos[Q3](−
1

4
a12a23m3Qdd2 −

1

2
a12a23m4Qdd2 −

1

4
a232m3Qdd1Cos[Q2]Cos[Q3] −

1

2
a232m4Qdd1Cos[Q2]Cos[Q3] −

1

4
a12a23m3Qd12Cos[Q2]Sin[Q2] −

1

2
a12a23m4Qd12Cos[Q2]Sin[Q2] +

5

12
a232m3Qd1Qd2Cos[Q3]Sin[Q2] +

a232m4Qd1Qd2Cos[Q3]Sin[Q2] +
5

12
a232m3Qd1Qd3Cos[Q3]Sin[Q2] +

a232m4Qd1Qd3Cos[Q3]Sin[Q2] +
5

12
a232m3Qd1Qd2Cos[Q2]Sin[Q3] +

a232m4Qd1Qd2Cos[Q2]Sin[Q3] +
5

12
a232m3Qd1Qd3Cos[Q2]Sin[Q3] +

a232m4Qd1Qd3Cos[Q2]Sin[Q3] +
1

4
a232m3Qdd1Sin[Q2]Sin[Q3] +

1

2
a232m4Qdd1Sin[Q2]Sin[Q3] +

1

12
a232m3(Cos[Q3](Qdd1Cos[Q2] −

Qd1Qd2Sin[Q2] − Qd1Qd3Sin[Q2]) − (Qd1Qd2Cos[Q2] + Qd1Qd3Cos[Q2] +

Qdd1Sin[Q2])Sin[Q3]) − a23𝑔𝑚Sin[Q1]Sin[Q2 + Q3] +

a23𝑔m4Cos[Q3]Sin[Q2]Sin[Q4] + a23𝑔m4Cos[Q2]Sin[Q3]Sin[Q4]))} (3.37)

42

3.2.4 Selection of The Motors

For selection of exact motor numerical values will be found. Torque1 value will be

only shown and selection of motor for this link. By using the inverse kinematic

analysis joint angles are found. Weight of the links were found using the SolidWorks.

𝑇0= −0.000359829 𝑁𝑚

𝑇1= −3.02901𝑁𝑚

𝑇2= −0.860866 𝑁𝑚

The servo motor usage is decided in the robot. These are listed in below.

Figure 3.2 Torque values of the robotic arm

Figure 3.3 One of the torque value

43

For the 𝑇0value most proper servo motor is MG996R. Datasheet of this servo motor

shown as[6]:

• Operating voltage: 4.8 ~ 6.6V

• Holding Torque: 9.4kg/cm(4.8v)-11kg/cm(6.0v)

• It holds 10mA current at idle. No-load current: 170mA

• Holding current: 1400mA

• Weight: 55g

• Size: 40.9×20×42.7mm

For the 𝑇1value most proper servo motor is DS3230MG. Datasheet of this servo motor

shown as[7]:

• Holding Torque (5V): 27 kg / cm

• Holding Torque (6.8 V): 32 kg / cm

• Speed: 0.16 sec / 60 ° (5V) / 0.12 sec / 60 ° (6.8 V)

• Operating voltage: 4.8 ~ 7.2 DC

• Weight: 65 g

• Size: 40 x 20 x 40.5 mm

For the 𝑇2 value most proper servo motor is DS3225. Datasheet of this servo motor

shown as[7]:

• Holding Torque (5V): 21 kg / cm

• Holding Torque (6,8 V): 24,5 kg / cm

• Speed: 0.15 sec / 60 ° (5V) / 0,13 sec / 60 ° (6,8 V)

• Operating voltage: 4.8 ~ 6.8 dc volt

• Weight: 60 g

• Type of Motor: DC Motor

• Gear Type: Copper and Aluminum

• Operating frequency: 50-333Hz

• Size: 40 x 20 x 40,5 mm

44

4 Remote Control based on MQTT

Protocol

4.1 Software Programming and MQTT Protocol

A lightweight messaging protocol called MQTT (Message Queuing Telemetry

Transport) was created for effective and dependable device-to-device communication,

especially in constrained settings with little bandwidth or high latency. Messages can

be published to topics by devices or applications using the publish-subscribe

messaging pattern used by MQTT, and other devices or applications can subscribe to

those topics to receive the messages.

Mosquitto should be installed into the Rasperry Pi to be able to use MQTT in it. Eclipse

Mosquitto is an open source (EPL/EDL licensed) message broker that implements the

MQTT protocol versions 5.0, 3.1.1 and 3.1. Mosquitto is lightweight and is suitable

for use on all devices from low power single board computers to full servers.

Figure 4.1 Simple overview of the MQTT protocol for robot and PC

4.1.1.1 Publish-Subscribe Messaging Pattern

By placing a broker in the middle, the publish-subscribe pattern in MQTT decouples

message senders (publishers) from message receivers (subscribers). Publishers are in

charge of sending communications to the broker without knowing whether or not they

will be read by anyone. By subscribing to particular topics on the broker, subscribers

indicate their interest in receiving messages. The broker serves as a middleman,

transferring published messages from publishers to the appropriate subscribers.

45

In this thesis, messages should be published and subscribed in both Raspberry Pi

python and PC with the C# to be able to exchange the data and control the mobile and

serial robot arm. Simple code snippet can be seen below.

private void gripperForward_Click(object sender, EventArgs e)
{

Task.Run(() =>
{

if (mqttClient != null && mqttClient.IsConnected)
{

mqttClient.Publish("testtopic",
Encoding.UTF8.GetBytes("Gripper Forward"));
}

});

}

Figure 4.2 Communication with the Broker

Additionally, connection needs to be created by the C# tool on the PC.

Figure 4.3 Establishing of the connection in the PC

4.1.1.2 MQTT Broker

A central server known as the MQTT broker serves as a go-between for publishers and

subscribers. Based on the topic hierarchy and subscription patterns, it receives

published messages from publishers and distributes them to the appropriate

subscribers. The broker is in charge of overseeing client connections, dealing with

subscriptions and unsubscriptions, and making sure messages are delivered

consistently. Popular MQTT broker implementations are readily accessible, including

Mosquitto, HiveMQ, and EMQ.In this thesis, HiveMQ broker have been used.

46

4.1.1.3 MQTT Topics

In MQTT, topics act as a hierarchical structure and constitute the foundation for

message filtering and routing. A topic is a string that designates a message's subject or

category. Similar to a file system path, topics are arranged hierarchically using forward

slashes (/) as separators. Examples of acceptable MQTT subjects include

"sensors/temperature" and "devices/+/status". Multiple levels are possible for topics,

allowing for adaptable subscription structures. In subscriptions, wildcards can be used

to match various topics: The topic hierarchy is just one level deep when using the "+"

wildcard. The wildcard "#" matches levels of any number, including 0 or more levels.

For instance, "devices/+/status" will match subjects such as "devices/device1/status"

and "devices/device2/status" if you subscribe to it.

Figure 4.4 Topic of the communication

In the publish-subscribe approach, message decoupling and effective message delivery

are made possible by publishers and subscribers interacting with the MQTT broker.

Subscribers receive communications by subscribing to pertinent topics, and publishers

publish messages to specified topics. Based on the subscribers' subscriptions and the

subject hierarchy, the broker makes sure that published messages are delivered to the

correct subscribers.

MQTT is a flexible and scalable messaging architecture that works well for Internet of

Things (IoT) applications where a large number of devices need to exchange data in a

quick and effective way. Across distributed systems, it enables simple integration, real-

time communication, and efficient information dissemination.

4.1.1.4 C# WinForm Application & Python Script for Remote Control

First of everything, connection to the MQTT broker should be established, this can be

done with the “Start Connection” button with the simple code snippet of the function.

Task.Run(() =>
{

47

mqttClient = new MqttClient("broker.hivemq.com");
mqttClient.MqttMsgPublishReceived +=

MqttClient_MqttMsgPublishReceived;
mqttClient.Subscribe(new string[] { "testtopic" }, new byte[] {

MqttMsgBase.QOS_LEVEL_AT_LEAST_ONCE });
mqttClient.Connect("testtopic");

});

Thanks to the MqttMsgPublishReceived function, tool will be able to read

the data from the broker continuously, since the message also can be

published by the robot via Raspberry Pi, it’s code snippet can be seen.

var message = Encoding.UTF8.GetString(e.Message);
if (message.StartsWith("Servo1"))
{

string pattern =
@"Servo1\=(.*?),Servo2\=(.*?),Servo3\=(.*?),Servo4\=(.*)";

RegexOptions options = RegexOptions.Multiline;
foreach (Match m in Regex.Matches(message, pattern, options))
{

firstJoint.Invoke((MethodInvoker)(() => firstJoint.Text =
m.Groups[1].Value));

secondJoint.Invoke((MethodInvoker)(() => secondJoint.Text =
m.Groups[2].Value));

thirdJoint.Invoke((MethodInvoker)(() => thirdJoint.Text =
m.Groups[3].Value));

fourthJoint.Invoke((MethodInvoker)(() => fourthJoint.Text =
m.Groups[4].Value));

 }
}

Figure 4.5 Main view and control of the motors on WinForm tool

48

4.1.1.5 Robot Control Window

In this window, each motor included in the mobile and robot arm can be controlled to

forward and backward, forward will increase robot angle 20 degrees and backward

will decrease robot angle 20 degrees, with this window mobile and serial robot can be

controlled manually to the desired point.

4.1.1.6 Robot Info Window

With this window mobile and serial robot arm control can be controlled automatically

with Forward and Inverse kinematics automatization.

Robot Position X, Y, Z represents position of the end-effector for the gripper, Mobile

Position X and Y represents position of the mobile robot about the save mobile origin

from the Mobile Origin save button of the tool. Joint Angle 1, 2, 3 ,4 and gripper angle

represents angles of the servo motors. Whenever Robot Position X, Y, and Z is entered

Joint Angles’ can be calculated by “Inverse” button which calls InverseKinematics

function, this calculation and end-effector position can be checked by the “Forward”

button that calls ForwardKinematics function.

By the “Get Robot Positions” button, C# tool will publish data to the MQTT broker

via topic, raspberry pi python script will be reading the on messages from the broker

again via same topic, whenever this button is clicked desired data will be published

and python script will identify it thanks to its subscription and then raspberry pi will

behave as publisher to send real-time data from the robot to the C# Tool, PC.

Automatized tasks can be handled with the “Run Robot”, whenever end-effector

position is decided and inverse kinematics is calculated automatically by the tool, “Run

Robot” button will change values of the servo motors to the calculated joint angle

values by publishing textbox values filled by the calculation the the MQTT broker via

topic, and then raspberry pi will identify and resolve it with the Regular Expression

(Regex) usage to check each joint angle value of the servo motors from the input text

sent by the C# Tool. Simple part of the “Run Robot” button functionality can be seen.

var robotRunningTest =
"RunServo1="+firstJoint.Text+",RunServo2="+secondJoint.Text+",RunServo3="
+thirdJoint.Text+",RunServo4="+fourthJoint.Text+",";
Task.Run(() =>

49

{
if (mqttClient != null && mqttClient.IsConnected)
{

mqttClient.Publish("testtopic",Encoding.UTF8.GetBytes(robotRunningTest));
}});

Figure 4.6 Control of the robot automatically by direct and inverse analysis

Direct and inverse kinematics will be automatically handled by the WinForm C# tool

to find joint angles (servo motor angles) from the end-effector X, Y, Z position of the

robotic arm. Information of the end effector position will be received by the python

script running on the raspberry pi which behaves like a publisher in this case.

Necessary transformation matrices were defined to be used in the equations, in

addition to this MathKernel could be used by using NuGet Package of the external

tool. MultiplyMatrix function were written to multiply two matrices, Regex were used

to extract equation result as radian and then it was converted to angle.

There was before jitter when controlling the servo motors, the issue was figured out

and resolved by using PiGPIOFactory as an input for the servo motor variable

decleration, in this case pigpiod service needs to be run by “sudo pigpiod” command.

50

Some parts of the initial version of the Raspberry Pi python code can be seen below.

from gpiozero import AngularServo

import pigpio

from time import sleep

import paho.mqtt.client as mqtt

import re

from gpiozero.pins.pigpio import PiGPIOFactory

factory = PiGPIOFactory()

servo = AngularServo(18, min_angle=-90, max_angle=90,

pin_factory=factory)

servo2 = AngularServo(23, min_angle=-90, max_angle=90,

pin_factory=factory)

servo3 = AngularServo(24, min_angle=-90, max_angle=90,

pin_factory=factory)

servo4 = AngularServo(25, min_angle=-90, max_angle=90,

pin_factory=factory)

servo5 = AngularServo(12, min_angle=-90, max_angle=90,

pin_factory=factory)

def on_connect(client, userdata, flags, rc):

 print("Connected to the broker succesfully!"+str(rc))

 client.subscribe("testtopic")

def on_message(client, userdata, msg):

 print(str(msg.payload))

 if (str(msg.payload) == "Forward1"):

 servo.angle = 90

 elif (str(msg.payload) == "Backward1"):

 servo.angle = 0

 elif (str(msg.payload) == "Forward2"):

 servo2.angle = servo.angle + 20

 elif (str(msg.payload) == "Backward2"):

 servo2.angle = servo.angle - 20

 elif (str(msg.payload) == "Forward3"):

 servo3.angle = servo.angle + 20

 elif (str(msg.payload) == "Backward3"):

 servo3.angle = servo.angle - 20

 elif (str(msg.payload) == "Forward4"):

 servo4.angle = 90

 print("test item")

 elif (str(msg.payload) == "Backward4"):

 servo4.angle = 0

 elif (str(msg.payload) == "Get Data"):

51

 servoAngles = "Servo1="+ str(servo.angle) + ",Servo2=" +

str(servo2.angle) + ",Servo3=" + str(servo3.angle) + ",Servo4=" +

str(servo4.angle)

 client.publish("testtopic", servoAngles)

 elif (str(msg.payload).startswith("RunServo1")):

 regex =

r"RunServo1\=(.*?),RunServo2\=(.*?),RunServo3\=(.*?),RunServo4\=(.*)"

 pattern = re.compile(regex)

 for match in pattern.finditer(str(msg.payload)):

 servo.angle = int(match.group(1))

 sleep(100)

 servo2.angle = int(match.group(2))

 sleep(100)

 servo3.angle = int(match.group(3))

 sleep(100)

 servo4.angle = int(match.group(4))

 elif (str(msg.payload) == "Gripper Forward"):

 servo5.angle = servo5.angle + 20

 elif (str(msg.payload) == "Gripper Backward"):

 servo5.angle = servo5.angle - 20

 print(msg.topic + " " + str(msg.payload))

 // Mobile Conditions

 if (str(msg.payload) == "MobileForward1"):

 GPIO.output(in1,GPIO.HIGH)

 GPIO.output(in2,GPIO.LOW)

 elif (str(msg.payload) == "MobileBacward1"):

 print("backward")

 GPIO.output(in1,GPIO.LOW)

 GPIO.output(in2,GPIO.HIGH)

 GPIO.cleanup()

client = mqtt.Client()

client.on_connect = on_connect

client.on_message = on_message

client.connect("broker.hivemq.com", 1883, 60)

client.loop_forever()

52

5 Prototyping of the Robotic Arm

5.1 Assembly and Specification of the Mechanism

5.1.1 Materials

The type of material for the robot arm needed to be chosen before employing laser

cutting. To make the base and linkages stronger and more affordable, sheet metal were

selected. Transmission steel used for the shaft.

After producing everything is needed, there was some issues during the assembling

phase. The alignment of the shaft and motor shaft is the issue at hand. Spacer should

be employed in order to resolve this issue. Delrin fiber were used for this spacer.

Additionally, in order to reduce friction and achieve balanced movement, Delrin fiber

were also employed in the rotating portion of the base.

5.1.2 Weight Analysis for the Links

Weight analyses were handled to sheet metal of the Link-1. There are two Link-1 in

the robot arm.

Figure 5.1 Weight of the Link-1

53

5.1.3 Assembly of the Robot Arm

During assembly, the robot arm's base began. A top tray, bottom tray, side holders,

and fiber delrin were used in the first phase of assembly.

Figure 5.2 Base of the robot arm

The assembly was then completed by adding the spinning portion of the base. There

were alignment problems with the motor shaft and shaft within this spinning

component. The use of fiber delrin was a solution to these alignment issues. As an

example, consider the following:

Figure 5.3 Fiber Derlin

54

After that, the first link to the seating component of our system was fully assembled.

A sheet bending issue that occurred during the laser cutting process was present in

this seating component. The heating procedure that was used to successfully bend the

seating portion was implemented to remedy this issue.

Figure 5.4 Bending test

Figure 5.5 Heating process

The set screw hole was opened once the issue was fixed, and tapping was then done.

Figure 5.6 Assembly of the upper body

55

The assembly was proceeded by connecting the seating part of the upper body to the

base.

Figure 5.7 Assembly of base to the body

After the two links of the robot is assembled to the base of the robot arm, the servo

motor holding parts made of sheet metal are welded to the links so that the servo motor

can be fixed to be able to control the shafts. Additionally, another sheet metal is welded

to the third link to be able to assemble and control the fourth joint, holding part of the

last servo motor were also welded to that sheet metal.

Figure 5.8 Fourth Joint and Gripper

56

After that, assembly of the mobile robot has been handled, DC motors and gear system

of the mobile robot is checked, configured and fixed. Sheet metal was produced for

the mobile robot and robot arm assembly, Delrin was used for this assemply in addition

to sheet metal. It can be seen below.

Figure 5.9 Front side of the mobile robot

Figure 5.10 Back side of the mobile robot

Figure 5.11 Wheels and gear system with DC motor

57

Assembly of the mobile and serial robot arm has been established.

Figure 5.12 Compound mobile and serial robot arm

In this thesis, additionally to the robot arm, mobile robot can be also controlled

remotely with MQTT protocol by publish and subscriber pattern from the desired topic

from the broker. In that case, mobile robot DC motor can be controlled from the C#

WinForm tool.

At the circuit level, electrical electronic parts such as voltage reducer, cable, LiPo

battery, DC power supply, L298N motor driver, servo motors, Raspberry Pi 3B,

breadboard and etc. were used.

5.2 Trajectory Planning

Trajectory planning is planning of the desired movements of the manipulator.

Manipulators with multi degree of freedom for accomplishing various complex

manipulation in the work space. Path is only for geometric description but trajectory

also include timing change of the manipulator.

Trajectory planning include 2 terms that are joint space and operational space. Joint

space is motion to be made by the robot by its joint values. The motion between the

58

two points is unpredictable. In operational space two points is known at all times and

it is controllable.

5.2.1 Joint-Space Trajectories

Trajectories are specified by defining some characteristic points that are directly

assigned by some specifications and assigned by defining desired configurations x in

the work-space, which are then converted in the joint space using the inverse kinematic

model.

In that given points trajectories must be computationally efficient, the position and

velocity profiles must be continuos functions of time, undesired effects must be

minimized or completely avoided.

5.2.2 Polynomial Trajectories

In these cases a trajectory is specified by assigning initial and final conditions on: time

, position, velocity, acceleration. Then, the problem is to determine a function q = q(t)

so that condition is satisfied.

Polynomial functions should solved as;

𝑞(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + . . . + 𝑎𝑛𝑡

𝑛 (5.1)

The degree n (3, 5, ...) of the polynomial depends on the number of boundary

conditions that must be verified and on the desired “smoothness” of the trajectory.

Given an initial and a final instant ti,tf , a (segment of a) trajectory may be specified by

assigning initial and final conditions:

• initial position and velocity 𝑞𝑖 , 𝑞
.

𝑖

• final position and velocity 𝑞𝑓 , 𝑞
.

𝑓

There are four boundary conditions in this situation, so a polynomial of degree at least

3 must be considered from the Eq. 5.1.

𝑞(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3

59

Where the four parameters a0, a1, a2, a3 must be defined so that the boundary conditions

are satisfied.

From the boundary conditions, it follows that

𝑞(𝑡𝑖) = 𝑎0 + 𝑎1𝑡𝑖 + 𝑎2𝑡𝑖
2 + 𝑎3𝑡𝑖

3 = 𝑞𝑖 (5.2)

Equations should be followed as shown below, by taking derivative of the equation.

𝑞
.
(𝑡𝑖) = 𝑎1 + 2𝑎2𝑡𝑖 + 3𝑎3𝑡𝑖

2 = 𝑞
.

𝑖

𝑞(𝑡𝑓) = 𝑎0 + 𝑎1𝑡𝑓 + 𝑎2𝑡𝑓
2 + 𝑎3𝑡𝑓

3 = 𝑞𝑓

𝑞
.
(𝑡𝑓) = 𝑎1 + 2𝑎2𝑡𝑓 + 3𝑎3𝑡𝑓

2 = 𝑞
.

𝑓

In order to solve these equations, the first moment of the motion is assumed that

ti = 0.

Therefore:

a0 = 𝑞𝑖

a1 = 𝑞
.

𝑖

a2 = (−3(𝑞𝑖 − 𝑞𝑓) − (2 𝑞
.

𝑖 + 𝑞
.

𝑓) tf) / tf
2

a3 = (2(𝑞𝑖 − 𝑞𝑓) + (𝑞
.

𝑖 + 𝑞
.

𝑓) tf) / tf
3

5.2.3 Task Planning for the End Effector

For the robot arm, necessary steps of the task are determined. First of all, start position

is setted. This point represent as a pole position and the movement starts from here.

After that, the movement path of the robot arm are needed to be defined. For this

movement, the way points of the end effector are determined. Thanks to these way

points, joint positions and velocities can be found.

60

Firstly, waypoints of the robot arm are identified according to workspace of the robot

arm. These waypoints also include pole position and final position of the end effector.

Pole position of the robot arm is selected by using the workspace analysis which is

done previously. This pole position coordinates are shown below:

After the selection of coordinates of the pole position, inverse kinematics is applied to

find corresponding joint positions. After inverse analysis of robot arm, selection of the

joint position done according to robot arm.

Q1 = 1.0472 Q2 = 2.71313 Q3 = -0.729867 Q4 = 2.22228

Figure 5.13 Waypoints of our Robot Arm

Figure 5.14 Workspace analysis for the pole position

61

Finally, after finding the joint positions by inverse analysis, accuracy of these positions

is checked according to direct analysis.

The second position of the robot arm is selected by using the workspace analysis which

is done previously. This second position coordinates are shown below:

After the selection of coordinates of the second position, inverse kinematics is applied

for finding joint positions.

Q1 = -0.70127 Q2 = 1.07024 Q3 = -1.542 Q4 = 0

Finally, after finding the joint positions by inverse analysis, accuracy of these positions

checked according to direct analysis.

Figure 5.16 Joint Angles

Figure 5.17 Workspace analysis for the second position

Figure 5.19 Joint angles Figure 5.18 End-effector positions

Figure 5.15 End-Effector Position

62

Third position of the robot arm is selected by using the workspace analysis which is

done previously. This third position coordinates are shown below:

After selection of coordinates of third position, inverse kinematics is applied for

finding joint positions.

Q1 = 1.18682 Q2 = 2.17322 Q3 = -0.473627 Q4 1.66013

Finally, after finding the joint positions by inverse analysis, the accuracy of these

positions are checked according to the direct analysis.

Fourth position of the robot arm is selected by using the workspace analysis which is

done previously. This fourth position coordinates are shown below:

Figure 5.20 Workspace analysis for the third postion

 Figure 5.22 Joint Angles Figure 5.21 End-effector positions

Figure 5.23 Workspace analysis for the fourth position

63

After the selection of coordinates of the last position, inverse kinematics is applied for

finding joint positions.

Q1 = 1.16937 Q2 = 1.90315 Q3 = -0.482841 Q4 = 1.57087

5.2.4 Assumed Polynomial Functions for Each Joint Positions

First Joint

In order to find polynomial equations in the first step, first time of the joint is assumed

as ti = 0.

Therefore:

a0 = 𝑞𝑖

a1 = 𝑞
.

𝑖

a2 = (−3(𝑞𝑖 − 𝑞𝑓) − (2 𝑞
.

𝑖 + 𝑞
.

𝑓) tf) / tf
2

a3 = (2(𝑞𝑖 − 𝑞𝑓) + (𝑞
.

𝑖 + 𝑞
.

𝑓) tf) / tf
3

For pole position of our robot arm, velocity is assumed as 0 so;

𝑞
.

11= 0

Then;

a1= 0

According to position of first joint for pole position of our robot arm, previously

position is found as;

Figure 5.24 End-effector position Figure 5.25 Joint Angles

64

 𝑞11= 1.0472

Then;

a0= 1.0472

For finding a2 , 𝑞𝑓value should be known, then this value equal to joint value in the

second position so;

 𝑞𝑓1= -0.70127

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet.

Then;

a2= (−3(1.0472+0.70127) − (2 * 0 +0.07) tf) / tf
2

a3 = (2(1.0472+0.70127) + (0 +0.07) tf) / tf
3

Second Joint

In order to find polynomial equations in first step, the moment that ti assumed as 0.

For pole position of our robot arm, velocity is assumed as 0 so;

𝑞
.

21= 0

Then;

a1= 0

According to position of second joint for pole position of our robot arm, previously

this position is found as;

𝑞21= 2.71313

65

Then;

a0= 2.71313

For finding a2, 𝑞𝑓value should be known, then this value equal to joint value in the

second position so ;

 𝑞𝑓1= 1.07024

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet.

Then;

a2= (−3(2.71313-1.07024) − (2 * 0 +0.07) tf) / tf
2

a3 = (2(2.71313-1.07024) + (0 +0.07) tf) / tf
3

Third Joint

For pole position of our robot arm, velocity is assumed as 0 so ;

𝑞
.

31= 0

Then;

a1= 0

According to position of third joint for pole position of our robot arm, previously this

position is found as;

𝑞31= - 0.729867

Then;

66

a0= - 0.729867

For finding a2, 𝑞𝑓value should be known, then this value equal to joint value in the

second position so ;

 𝑞𝑓3= -1.542

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet.

Then;

a2= (−3(- 0.729867+1.542) − (2 * 0 +0.07) tf) / tf
2

a3 = (2(- 0.729867+1.542) + (0 +0.07) tf) / tf
3

Fourth Joint

For pole position of our robot arm, velocity is assumed as 0 so;

𝑞
.

41= 0

Then;

a1= 0

According to position of fourth joint for pole position of our robot arm, previously this

position is found as;

𝑞41= 2.22228

Then;

a0= 2.22228

67

For finding a2, 𝑞𝑓value should be known, then this value equal to joint value in the

second position so;

𝑞𝑓4= 0

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet.

Then;

a2= (−3(2.22228 - 0) − (2 * 0 +0.07) tf) / tf
2

a3 = (2(2.22228 - 0) + (0 +0.07) tf) / tf
3

Finding Polynomial Equations For Second Position

First Joint

After finding this equation for pole position ti can’t considered as 0. So equations are

became as;

a0 = 𝑞𝑖

a1 = 𝑞
.

𝑖

a2 = (−3(𝑞𝑖 − 𝑞𝑓) − (2 𝑞
.

𝑖 + 𝑞
.

𝑓) (tf - ti)) / (tf - ti)
2

a3 = (2(𝑞𝑖 − 𝑞𝑓) + (𝑞
.

𝑖 + 𝑞
.

𝑓) (tf - ti)) / (tf - ti)
3

According to position of first joint for second position of our robot arm, previously

this position is found as;

𝑞12= -0.70127

68

Then;

a0= -0.70127

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.

Therefore;

𝑞
.

12= 0.07

Then;

a1= 𝑞
.

12

For finding a2, 𝑞𝑓value should be known, then this value equal to joint value in the

third position so;

𝑞𝑓1= 1.16937

a2= (−3(-0.70127-1.18682) − (2 *0.07 +0.07) (tf - ti)) / (tf - ti)
2

a3 = (2(-0.70127 -1.18682) + (0.07 +0.07) (tf - ti)) / (tf - ti)
3

Second Joint

According to position of second joint for second position of our robot arm, previously

this position is found as;

𝑞22= 1.07024

Then;

a0= 1.07024

69

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.

Therefore;

𝑞
.

22= 0.07

Then;

a1= 0.07

For finding a2 , 𝑞𝑓value should be known, then this value equal to joint value in the

third position so;

𝑞𝑓2= 2.17322

a2= (−3(1.07024 - 2.17322) − (2 * 0.15 +0.15) (tf - ti)) / (tf - ti)
2

a3 = (2(1.07024 - 2.17322) + (2 * 0.15 +0.15) (tf - ti)) / (tf - ti)
3

Third Joint

According to position of third joint for second position of our robot arm, previously

this position is found as;

𝑞32

= -1.542

Then;

a0 = -1.542

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.

Therefore;

70

𝑞
.

32= 0.07

Then;

a1= 0.07

For finding a2 , 𝑞𝑓value should be known, then this value equal to joint value in the

third position so;

𝑞𝑓3= -0.473627

a2= (−3(-1.542 + 0.473627) − (2 * 0.07 +0.07) (tf - ti)) / (tf - ti)
2

a3 = (2(-1.542 + 0.473627) + (0.07 +0.07) (tf - ti)) / (tf - ti)
3

Fourth Joint

According to position of fourth joint for second position of our robot arm, previously

this position is found as;

𝑞42

= 0

Then;

a0 = 0

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.

Therefore;

𝑞
.

42= 0.07

Then;

a1= 0.07

71

For finding a2 , 𝑞𝑓value should be known, then this value equal to joint value in the

third position so ;

𝑞𝑓4= 1.66013

a2= (−3(0 - 1.66013) − (2 * 0.15 +0.15) (tf - ti)) / (tf - ti)
2

a3 = (2(0 - 0.473627) + (2 * 0.15 +0.15) (tf - ti)) / (tf - ti)
3

Finding Polynomial Equations For Third Position

First Joint

According to position of first joint for third position of our robot arm, previously this

position is found as;

𝑞13= 1.18682

Then;

a0 = 1.18682

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.

Therefore;

𝑞
.

13= 0.07

Then;

a1= 0.07

For finding a2 , 𝑞𝑓value should be known, then this value equal to joint value in the

fourth position so;

𝑞𝑓1= 1.16937

a2= (−3(1.18682-1.16937) − (2 * 0.07+0.07) (tf - ti)) / (tf - ti)
2

72

a3 = (2(1.18682-1.16937) + (0.07+0.07) (tf - ti)) / (tf - ti)
3

Second Joint

According to position of second joint for third position of our robot arm, previously

this position is found as;

𝑞23= 2.17322

Then;

a0= 2.17322

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.

Therefore;

𝑞
.

23
= 0.07

Then;

a1= 0.07

For finding a2, 𝑞𝑓value should be known, then this value equal to joint value in the

fourth position so;

𝑞𝑓2= 1.90315

a2= (−3(2.17322-1.90315) − (2 * 0.07 +0.07) (tf - ti)) / (tf - ti)
2

a3 = (2(2.17322-1.90315) + (0.07 +0.07) (tf - ti)) / (tf - ti)
3

Third Joint

According to position of third joint for third position of our robot arm, previously this

position is found as;

73

𝑞33= -0.473627

Then;

a0 = -0.473627

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.

Therefore;

𝑞
.

33
= 0.07

Then;

a1= 0.07

For finding a2, 𝑞𝑓value should be known, then this value equal to joint value in the

fourth position so;

𝑞𝑓3= -0.482841

a2= (−3(-0.473627+0.482841) − (2 * 0.07 +0.07) (tf - ti)) / (tf - ti)
2

a3 = (2(-0.473627+0.482841) + (0.07 +0.07) (tf - ti)) / (tf - ti)
3

Fourth Joint

According to position of fourth joint for third position of our robot arm, previously

this position is found as;

𝑞43= 1.66013

Then;

a0= 1.66013

74

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.

Therefore;

𝑞
.

43
= 0.07

Then;

a1= 0.07

For finding a2, 𝑞𝑓value should be known, then this value equal to joint value in the

fourth position so;

𝑞𝑓4= 1.57087

a2= (−3(1.66013-1.57087) − (2 * 0.07 +0.07) (tf - ti)) / (tf - ti)
2

a3 = (2(1.66013-1.57087) + (0.07 +0.07) (tf - ti)) / (tf - ti)
3

Finding Polynomial Equations for the Last Position

First Joint

According to position of first joint for fourth position of our robot arm, previously this

position is found as;

𝑞14= 1.16937

Then;

a0= 1.16937

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.

Therefore;

75

𝑞
.

14= 0.07

Then;

a1= 0.07

For finding a2 , 𝑞𝑓value should be known, then this value equal to joint value in the

fourth position so;

𝑞𝑓1= 1.16937

a2= (−3(1.16937-1.16937) − (2 *0.07 +0.07) (tf - ti)) / (tf - ti)
2

a3 = (2(1.16937-1.16937) + (0.07 +0.07) (tf - ti)) / (tf - ti)
3

Second Joint

According to position of second joint for fourth position of our robot arm, previously

this position is found as ;

𝑞24= 1.90315

Then;

a0= 1.90315

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.

Therefore;

𝑞
.

14= 0.07

Then;

a1= 0.07

76

For finding a2 , 𝑞𝑓value should be known, then this value equal to joint value in the

fourth position so ;

𝑞𝑓2= 1.90315

a2= (−3(1.90315-1.90315) − (2 * 0.07 +0.07) (tf - ti)) / (tf - ti)
2

a3 = (2(1.90315-1.90315) + (0.07 +0.07) (tf - ti)) / (tf - ti)
3

Third Joint

According to position of third joint for fourth position of our robot arm, previously

this position is found as;

𝑞34= -0.482841

Then;

a0= -0.482841

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.

Therefore;

𝑞
.

34= 0.07

Then;

a1= 0.07

For finding a2, 𝑞𝑓value should be known, then this value equal to joint value in the

fourth position so;

𝑞𝑓3= -0.482841

a2= (−3(-0.482841+0.482841) − (2 * 0.07 +0.07) (tf - ti)) / (tf - ti)
2

a3 = (2(-0.482841+0.482841) + (0.07 +0.07) (tf - ti)) / (tf - ti)
3

77

Fourth Joint

According to position of fourth joint for fourth position of our robot arm, previously

this position is found as;

𝑞44= 1.57087

Then;

a0= 1.57087

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This

assumption is made according to motor datasheet. Velocity will be equal throughout

the entire movement.

Therefore;

𝑞
.

44= 0.07

Then;

a1= 0.07

For finding a2, 𝑞𝑓value should be known, then this value equal to joint value in the

fourth position so;

𝑞𝑓4= 1.57087

a2= (−3(1.57087-1.57087) − (2 * 0.07 +0.07) (tf - ti)) / (tf - ti)
2

a3 = (2(1.57087-1.57087) + (0.07 +0.07) (tf - ti)) / (tf - ti)
3

5.3 NUMERICAL POLYNOMIAL FUNCTIONS

After found all parametrical polynomial functions, all numeric values should be found

according to parametrical equations.

First Joint with Numerical Values

78

Numerical values were found by entering all values in numerically according to

parametrical polynomial functions.

Numerical values are entered in the parametrical polynomial function, then position

graph is drawn according to numerical polynomial function.

The position graph of the first position at each position was found with the same

method and checked to see if it was following each other.

In the first graph the movement of the first joint from the first position to the second

position starts at 1.0472 and ends at -0.70127, and these values can be seen on the

graph.

0.5 1.0 1.5 2.0

0.5

0.5

1.0

Figure 5.26 First Joint Motion from First Position to Second Position

Figure 5.27 Position Change Graph

79

In the second graph the movement of the first joint from the second position to the

third position should start at -0.70127 and end at 1.18682, and these values can also be

seen on the graph.

Therefore, it was concluded that the first two movements followed each other. This

compare shown below;

In the third graph the movement of the first joint from the third position to the fourth

position starts at 1.18682 and ends at 1.16937, and these values can be seen on the

graph.

In the fourth graph the movement of the first joint from the fourth position to the fourth

position which is made for to get zero to joint velocities should start at 1.16937 and

end at 1.16937, and these values can also be seen on the graph.

0.5 1.0 1.5 2.0

0.5

0.5

1.0

0.5 1.0 1.5 2.0

0.5

0.5

1.0

Figure 5.28 First to Second Position

Figure 5.29 Second to Third Position

80

Therefore, it was concluded that the third movement followed the second and the

fourth movement followed the third thank to graphs which are drawn according to

numerical polynomial functions. This compare shown below;

These data were entered as a SolidWorks data points for using motion simulation of

our robot arm. All values are converted from radians to degrees.

Figure 5.32 SolidWorks Data Entries

0.5 1.0 1.5 2.0

1.15

1.16

1.17

1.18

1.19

1.20

1.21

0.5 1.0 1.5 2.0

1.175

1.180

1.185

1.190

Figure 5.30 Third to Fourth Position

Figure 5.31 Stop Motion of the Robot Arm

81

Figure 5.33 SolidWorks Data Entries for other joints

After, finding first joint position graphs for each position change, velocity change

graphs is found by taking derivative of the third order polynomial function. Initially

the velocity will be 0, then the velocity rises to constant speed of 0.07.

Figure 5.34 First Joint Velocity From First Position to Second Position

82

After the velocity rised to constant speed of 0.07, it will be equal throughout the entire

movement as 0.07.

Figure 5.35 Constant Velocity of the Second and Third Position Change

Finally, the velocity will decrease to 0 again and the motion will end.

Finally, after finding first joint velocity graphs for each position change, acceleration

change graphs is found by taking derivative of the velocity polynomial functions.

Figure 5.37 Acceleration Change of the Figure 5.28

0.5 1.0 1.5 2.0

0.02

0.02

0.04

0.06

Figure 5.36 Decrease to the ‘0’ Velocity

83

Acceleration calculation was made for each position change.

Joint Motions for First Position to Second Position

For second joint in first position to second position;

Figure 5.38 Second Joint From First Position to Second Position

All numerical data were converted from radians to degrees, then entered as simulation

data in SolidWorks and the same position graphs were obtained.

Figure 5.39 SolidWorks Motion of the Figure 5.38

For third joint in first position to second position;

Figure 5.40 Third Joint From First Position to Second Position

84

Figure 5.41 SolidWorks Motion Data of the Figure 5.40

For the fourth joint in first position to second position;

Figure 5.42 Fourth Joint From First Position to the Second Position

Figure 5.43 SolidWorks Motion Data of Figure 5.42

All these procedures were repeated for each position change of each joint. Then each

of them was entered into the SolidWorks as simulation data.

85

5.4 Path Drawing

The waypoints obtained from the workspace analysis were checked on the graph which

is drawn by using polynomial equations that was found with cubic polynomial function

method.

The polynomial equations obtained after the correctness of our position, velocity and

acceleration graphs were checked in the workspace analysis by entering these

polynomial equations into the matlab code in a for loop as ;

Figure 5.45 Path Drawing of our Robot Design for Four Position

Figure 5.44 Data Entry in Matlab as Polynomial Function

86

5.5 Position Change of the Robot Arm

5.5.1 Position Simulation in SolidWorks

Pole position of our robot arm shown below;

After pole position to second position, each joint make movement. Below, the robot

takes the piece.

After second position to third position, Below is the middle waypoint of the robot.

Figure 5.16 The Pole Position to Second Position SolidWorks Simulation

Figure 5.17 The Second Position to Third Position SolidWorks Simulation

Figure 5.18 The Third Position to Fourth Position SolidWorks Simulation

87

After third position to fourth position, Below, the robot leaves the piece on the table.

5.5.2 Position Simulation in the Produced Robot

After the robot parts are produced and assembled, its electrical circuit has been done,

by using python script in the Raspberry Pi which is connected to the compound mobile

and serial robot and C# WinForm tool executing in the PC, compound mobile and

serial robot and its joints are controlled.

Figure 5.20 Initial position of the robot arm

Figure 5.19 The Last Position SolidWorks Simulation

88

After robotic arm setup is done, joints were controlled and position is changed as

shown below to the second position.

Figure 5.21 Second Position of the robot arm

After robot is reached to second position, it can be stand in there, by running the scripts

and controlling robot from the C# WinForm tool manually or automatically by the

inverse kinematics, robot were moved to the final position which was planned to go.

Figure 5.22 Final Position of the robot arm

89

6 References

[1] Duygu Atcı, Alpay Toprak, 4. Baskent International Conference on

Multidisciplinary Studies, Abstract Book, Design and Remote Control of a Compound

Mobile Serial Robot, August 4-6, 2023, Ankara, Türkiye, Page Number 109

[2] Vedran Vajnberger, Tarik Terzimehić, Semir Silajdžić and Nedim Osmić

Faculty of Electrical Engineering, Department of Automatic Control and Electronics,

Sarajevo, Bosnia and Herzegovina, Remote Control of Robot Arm with five DOF,

2011

[3] Li-Hu Jhang, Carlo Santiago and Chian-Song Chiu Department of Electrical

Engineering, Chung Yuan Christian University, Taiwan, ROC. Multi-Sensor Based

Glove Control of An Industrial Mobile Robot Arm

[4] R. Kazala, A. Taneva, M. Petrov, St. Penkov, Department of Industrial Electrical

Engineering and Automatics, Kielce University of Technology, Kielce, Poland,

Wireless Network for Mobile Robot Applications

[5] Lung-Wen Tsai, Robot Analysis: The Mechanics of Serial and Parallel

Manipulators, John Wiley and Sons, 1999.

[6] Datasheet of the Motor, MG996R High Torque Metal Gear Dual Ball Bearing

Servo This High-Torque MG996R

[7] Datasheet of the Motor, DS3230 - digital servo, https://kamami.pl/en/servos-

standard/583003-ds3230-digital-servo.html

[7] Datasheet of the Motor, DS3225, Dongguan City Dsservo Technology Co.Ltd

https://www.dsservo.com/en/d_file/DS3225%20datasheet.pdf

https://www.dsservo.com/en/d_file/DS3225%20datasheet.pdf

90

7 Curriculum Vitae

Name Surname: Alpay Toprak

Education:

2015–2020 İzmir Kâtip Çelebi University, Bachelor’s Degree, Dept. of

Mechatronics Engineering

2018-2019 West Pomeranian University of Technology, Dept of Mechatronics

Engineering with Erasmus+ Program

2020–2023 İzmir Kâtip Çelebi University, Master’s Degree, Dept. of Robotics

Engineering

Work Experience:

March 2020 – April 2020 Almanyalı Diesel-Test Pump, Test Engineer

October 2020 – April 2021 Tolkar Makina ve Sanayi Ticaret A.Ş, Software

Tool Development Engineer

April 2021 – April 2023 Borgwarner Inc., Systems/Software Tool

Development Engineer

April 2023 – Ongoing Vestel A.Ş, Senior Automotive Software

Specialist

Publication:

Duygu Atcı, Alpay Toprak, 4. Baskent International Conference on Multidisciplinary

Studies, Abstract Book, Design and Remote Control of a Compound Mobile Serial

Robot, August 4-6, 2023, Ankara, Türkiye, Page Number 109

