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Design and Development of a Compound Mobile Serial 

Robot with Remote Control Application 

Abstract 

The design of a compound mobile serial robot controlled remotely by a C# program 

utilizing the MQTT (Message Queuing Telemetry Transport) protocol is the main 

topic of this thesis. The robot is powered by a Raspberry Pi. The advantages of mobility 

and serial manipulators are combined in the compound mobile serial robot, allowing 

it to carry out difficult tasks in a variety of settings. As the main computer, the 

Raspberry Pi gives the robot and its control application connectivity and processing 

capability. Data interchange and command execution are made possible by the 

integration of the MQTT protocol, which guarantees effective and dependable 

connection between the robot and the control system. The integration of the MQTT 

protocol, hardware components, mechanical design, kinematic and dynamic analysis 

of the robot, and software implementation are all investigated in this study. This thesis 

intends to stimulate additional ideas in the field of intelligent and remotely operated 

robotic systems by utilizing the capabilities of Raspberry Pi and MQTT. For the 

protocol implementation, a 4 DoF serial arm and the mobile station connected to it 

were designed with mechanical design and prototype production was made, 

additionally direct and inverse kinematics of the robot arm has automatized with the 

C# WinForm application, thanks to this developed application, robot arm control was 

fully automatized and controlled. The thesis has demonstrated a novel applicacation 

of the protocol to a compound mobile serial robot, only there is no video for both 

mobile and serial robot arm working at the same time. 

Keywords: Compound mobile serial robot, Remote Control, C# Application, MQTT 

Protocol, Raspberry Pi, Robotics, Kinematic and Dynamic Analysis.  
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Uzaktan Kontrol Uygulamalı Bileşik Mobil Seri Robot 

Tasarımı ve Geliştirilmesi 

Öz 

Bu tez, Raspberry Pi tarafından güçlendirilen MQTT (Message Queuing Telemetry 

Transport) protokolünü kullanarak uzaktan kontrol edilen bir bileşik hareketli seri 

robotun tasarımı ve geliştirilmesine odaklanmaktadır. Bileşik hareketli seri robot, 

hareket kabiliyeti ve seri manipülatörlerin avantajlarını bir araya getirerek çeşitli 

ortamlarda karmaşık görevleri gerçekleştirebilme yeteneğine sahiptir. Raspberry Pi, 

robotun ve kontrol uygulamasının bağlantı ve işleme yeteneklerini sağlayan merkezi 

bir bilgisayar olarak hizmet vermektedir. MQTT protokolünün entegrasyonu, robot ile 

kontrol sistemi arasında etkili ve güvenilir iletişimi sağlayarak gerçek zamanlı veri 

alışverişi ve komut yürütme imkanı sunmaktadır. Bu araştırma kapsamında, donanım 

bileşenleri, mekanik tasarım, robotun kinematik ve dinamik analizi ile yazılım 

uygulaması incelenmektedir. Bu tez, Raspberry Pi ve MQTT'nin yeteneklerinden 

faydalanarak zeki ve uzaktan kontrol edilebilen robot sistemleri alanında ilave 

fikirlerin ortaya çıkmasını amaçlamaktadır. Protokol implementasyonu için mekanik 

tasarım ile 4 serbestlik dereceli bir seri kol ve buna bağlı mobil istasyon tasarlandı ve 

prototip üretim yapıldı, aynı zamanda tüm ileri ve ters kinematik analizler C# 

uygulamasına entegre edeldi ve gerçek zamanlı veri değişimi ile robot kontrolü 

sağlandı. Tez, yukarıdakilerin uygulanabilirliğini göstermiştir. Mobil ve robot kolunun 

birlikte aynı anda çalışırken bir videosu bulunmamaktadır. 

Anahtar Kelimeler: Bileşik Mobil Seri Robot, Uzaktan Kontrol, C# Uygulaması, 

MQTT Protokolü, Raspberry Pi, Robotik, Akıllı Sistemler, Kinematik ve Dinamik 

Analiz. 
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1 Introduction 

In recent years, the field of robotics has made incredible strides, changing numerous 

sectors and pushing the limits of human capability. Mobile serial robots have become 

a dynamic and adaptable solution in this field, enabling detailed movements and 

complex operations in a range of settings. Parallel to this, a paradigm change has been 

brought about by the Internet of Things (IoT), which connects systems and gadgets in 

novel ways. Intelligent and remote-controlled robotic systems have been made 

possible by the fusion of robotics and the internet of things (IoT). 

This thesis aims to explore the complexities of designing and developing a compound 

mobile serial robot, powered by a remote control C# WinForm Desktop application. 

The MQTT (Message Queuing Telemetry Transport) protocol's integration is crucial 

since it will allow for flawless coordination and communication between the robot and 

its control system. The robot may be remotely controlled while enabling real-time data 

interchange and decision-making processes by taking advantage of this protocol's 

possibilities. Importantly, the Raspberry Pi will act as the system's main computer as 

client, controlling the robot and its control application with the connectivity and 

processing capacity as needed. 

The compound mobile serial robot, which combines the benefits of mobility and serial 

manipulators, provides a revolutionary approach to robotics. The robot can carry out a 

variety of duties thanks to its special combination, including negotiating challenging 

terrain, handling objects and inspection of them and performing accurate moves in 

various environments. The C# program also offers a simple and easy-to-use interface 

for controlling the robot's functions and motions remotely without being same network 

in safe, additionally automatized calculation and control of the servo motors by the 

tool. Users can enter desired angle to the servo motor, can calculate servo motor angles 

by end-effector position of the gripper and run the robot arm joints with those angles. 
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The MQTT protocol is used to greatly increase the efficiency and dependability of 

communication between the robot and the control system. The publish-subscribe 

architecture of the protocol allows for seamless data transmission and command 

execution between the robot and the control application. One of the most crucial points 

is that it offers a secure workplace for challenging tasks.  

In this thesis, all the different aspects of designing and creating the compound mobile 

serial robot will be explored. The hardware components, mechanical design, 

workspace, kinematics, and dynamic analysis of the robot will be examined. 

Additionally, Raspberry Pi's computational capability and its interoperability with 

communication, actuator, and communication modules will also be analyzed. The 

software implementation, based on the creation of the C# remote control application 

and the integration of the MQTT protocol for fluid communication using the Python 

language for servo motor control on Raspberry Pi, will be studied. 

 

Figure 1.1 MQTT protocol overview 
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The findings of this study will develop robotic devices that can be controlled remotely 

and their intelligence and advantages. The MQTT protocol and Raspberry Pi, along 

with the compound mobile serial robot, have the potential to transform sectors like 

manufacturing, logistics, space sciences, bomb disposal areas. This thesis intends to 

inspire additional ideas and direct future research in the area of intelligent and remotely 

operated robotic systems by pushing the boundaries of robotics and utilizing the 

capabilities of the Raspberry Pi. The publication of the written thesis was presented at 

the 4. Baskent International Conference on Multidisciplinary Studies, and the abstract 

of the thesis is included in the published book[1]. 

1.1 Literature Review & Research and Analysis 

1.1.1 Remote Control of Robot Arm with five DoF 

Explains whole process of making a system for remote control of a robot arm with five 

DOF[2]. Serial RS-232 protocol is between PC and Microcontroller, and this 

communication is used to operate the arm. Uses TCP/IP protocol for remote control 

provides communication between server and client computers and sends information 

of position of robot arm. GUI is implemented in MATLAB for user interaction. 

For every degree of freedom two pins of microcontroller and two relays are assigned 

(pins RD0 and RD1 for base, RD2 and RD3 for shoulder, RD4 and RD5 for elbow, 

RD6 and RD7 for wrist and RC0 and RC1 for fist). 

Depending on the state of two pins, there are four situations: 

• If both pins are low, two relays controlled by them are open and motor of the 

appropriate DOF is not running; 

• if one pin is high and another is low, current flows in one direction and motor 

is running in appropriate direction; 

• for opposite state of pins, motor is running in opposite direction;  

• 'forbidden combination' is when both pins are high, because then both relays 

are active and source is short circuited. 

A microcontroller were used to establish a communication with the server PC. The 

used communication is the serial communication RS-232. Serial communication is the 
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most common low-level. To establish communication via ETHERNET, Real VNC 

program and MATLAB Server are used. Real VNC program is used to obtain visual 

feedback by camera, and MATLAB Server is used For transmission of control 

messages from client PC to server PC. The communication was established through 

MATLAB using two m-files. First m-file creates serial port and configures its 

properties. The communication between the server PC and the microcontroller is 

realized using second m-file. In this m-file, function was created to collect data set by 

user inside GUI. The user monitor movement of robot arm by camera. GUI is 

implemented in MATLAB as show below. TCP/UDP/IP toolbox is used for establish 

connection between server   and client, VNC server also was used to transmit visual 

feedback. 

 

Figure 1.2 GUI for the researched project 

1.1.2 Multi-sensor based glove control of industrial mobile robot 

arm 

Performance and efficiency are more safe than an actual human performing the task 

especially in dangerous environments. The aim of this task is to ease an operation's 

complexity and hazardousness by only using a single hand to control a mobile robot 

with a 6-axis robotic arm[3]. Both mobile robot and robotic arm can be controlled 

wirelessly using a wearable data glove that is equipped with multiple sensors and a 

microcontroller. 
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The payload (robot arm) must be carefully placed at the top of the mobile robot in 

between its right and left wheels. The pressure sensitive sensor, flex bending sensor, 

inertial sensor and Arduino mini is used in the glove. 

 

Figure 1.3 Hand controller of the robot 

The mode selection is switched according to the hand action  measured by the inertial 

sensor IMU, and the signals of the pressure and bending sensors on the data gloves 

respectively control various instructions action of the vehicle mode and the robot arm 

mode. 

 

Figure 1.4 Overview of the article 

1.1.3 Wireless Network for Mobile Robot Applications 

The idea of a wireless network for information exchange between mobile robot nodes, 

which can be utilized for monitoring and control applications, is discussed in the 
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article[4]. The primary goal is to decrease the amount of energy and computational 

power used by robot nodes. A central host computer that can be linked to a cloud 

network is outfitted with sensors and communication gear to collect data from each 

node and transfer it to it. A Wireless Sensor Network (WSN) is the term used to 

describe this system. In order to attain the desired efficiency, the study underlines the 

significance of employing appropriate communication protocols. The suggested 

method transfers data between networked nodes using the MQTT (MQ Telemetry 

Transport) protocol. 

The article describes how communication is organized amongst the nodes and outlines 

how the system is verified through message exchange between the nodes and the 

central system. The main reason for deploying networked mobile robots is to handle 

difficult-for-people jobs that are complex and potentially dangerous, like air 

monitoring, radiation from nuclear power plant failures, and land pollution assessment. 

In conclusion, the article concludes with a proposal for a wireless network for 

applications involving mobile robots, highlighting the usage of the MQTT protocol for 

effective data transfer between networked nodes. The objective is to use a grid of 

networked mobile robots to provide cost- and energy-efficient monitoring and control 

applications. 

1.1.4 Finger Robotic control use M5Stack board and MQTT 

Protocol based 

The study on using the MQTT protocol and the M5Stack board to remotely control a 

robotic hand's finger is presented in the paper. The goal of the project is to create 

remote control technology that will enable robotic fingers to perform various 

activities, like pressing buttons and adjusting volume. Servo angles are represented 

by values x and y or 1 and 2, and the MQTT protocol simplifies communication. For 

operating the robotic finger and using Python and MQTT Brokers to broadcast and 

subscribe to data, the study uses blockly programming. The WiFi-enabled M5Stack 

board acts as the platform for controlling the finger robot. Additionally, the study 

examines aspects like power usage, security, and data transmission, illustrating finger 

movement instances and the effects of interference on data transmission. 
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Figure 1.5 Architecture Network Design of this research 

The use of inverse kinematics for robotic finger control and the MQTT protocol for 

communication are the two primary topics which are taken into account for this 

thesis to take as an reference of the paper. Here is a more thorough breakdown of 

these elements: 

 

a. Inverse Kinematics for Robotic Finger Control: 

To demonstrate finger motion, it proposes the planar two-link manipulator model. 

The foundation for calculating the joint angles (1 and 2) of the robotic finger is 

provided by the forward kinematics equations, which are represented by x and y 

coordinates. The study illustrates the relationship between these equations and finger 

movement in the planar space. 

 

b. MQTT Protocol for Communication: 

The research uses the MQTT (Message Queuing Telemetry Transport) protocol to 

make it easier for the robotic finger and distant gadgets to communicate. A well-

liked IoT (Internet of Things) protocol called MQTT is well-known for its 

effectiveness and simplicity. Using MQTT Brokers, which serve as a middleman for 

data exchange between publishers (who transmit data) and subscribers (who receive 

data), is a part of it. 

 

The M5Stack board, which has an ESP8266 WiFi module and is MQTT compatible, 

will be used in the study's configuration. The M5Stack board serves as the robotic 

finger's controller and talks with MQTT Brokers to transfer data. 
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1.2 Project Design Processes 

a. Job Definition and Task of the Project 

b. Conceptual Design 

c. Kinematic Analysis 

i. Direct Analysis 

ii. Inverse Analysis 

iii. Jacobian Analysis 

d. Dynamic Analysis 

i. Forward Analysis 

ii. Backward Analysis 

iii. Torque Analysis 

e. Material, Hardware Selection and Integration 

f. Software Development 

g. Testing and Evaluation 

1.3 Job Definition and Task of the Project 

The robot has the benefit of being serial and mobile compound, in addition to allowing 

safe and effective use in numerous areas with remote control. This remote control can 

be assigned as scheduled tasks and perform certain tasks automatically thanks to the 

WinForm C# Tool features. 

The robot will basically be based on mechanical or any type of part examination and 

analysis it remote or difficult terrains, with the integration of artificial intelligence and 

part recognition by the Raspberry Pi. The parts can be picked an place, explosive, 

dangerous or can be worked at any point that is closed to human access. 

Main goal will be to pick a part from a certain point, define it, place and drop it to a 

different point automatically and handle all of these tasks remotely. 
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2 Design and Analysis of the Serial 

Robot 

2.1 Conceptual Design 

Robot design have been done on SolidWorks. The robot has the structure with 4 DoF. 

The kinematic structure of the serial arm is the same as one of the traditional industrial 

4-DoF robots. All joints are revolute joint in the robot design. Table-1 shows DH table 

of the serial arm and Z axis means the rotation axis of joint. 

 

 

 

 

 

 

Table 1.1 DH Table 

i ai-1,i  αi-1,1 Si Qi 

1 a0,1 α0,1 S1 Q1 

2 a1,2 α1,2 S2 Q2 

3 a2,3 α2,3 S3 Q3 

4 a3,4 α3,4 S4 Q4 

Figure 2.1 Conceptual Design DH Parameters 
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Length of link (a): It is determined as the distance measured between the mutual 

perpendiculars axis. 

Torsion angle (α): It is the angle formed between the orthogonal. Projections of along 

the pivot axes in a plane perpendicular to the usual normal. 

Joint. Offset (S): Length of connections of the normal perpendicular to the joint axis. 

Joint. Angle (θ): The angle among the orthogonal. Projections which is normal 

perpendicular to the. Plane perpendicular to the pivot axes. 

The parameters required for the table are defined by making measurements of the 

drawing. 

 

 

Figure 2.2 Detailed Mechanical Design of Robot in SolidWorks 

In this final design of the serial arm robot there were some issues with the production. 

Linkages are restructured according to laser cutting necessities. 
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For laser cutting process, robot arm design is restructed in AutoCAD according to laser 

cutting production methods. This is shown below. 

 

 

 

 

 

 

 

     

2.2 Kinematic Analysis 

Robot kinematics is the study of the motion of robots. In a kinematic analysis, the 

position, velocity and acceleration of all connections are calculated regardless of the 

forces that cause this motion. Robot kinematics is about redundancy, collision 

avoidance and singularity avoidance. When dealing with the kinematics used in robots, 

a reference frame assigns each part of the robot, and so a serial arm robot can have 

many individual frames assigned to each moving part.  

There are two separate problems to be solved in the kinematic analysis of the 

manipulator position: direct kinematics and inverse kinematics, which are presented 

in the sections in below. 

 

Figure 2.4 AutoCAD drawing by part Figure 2.3 AutoCAD Overall View 
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2.2.1 Workspace Analysis with Matlab Simulation in Simulink 

Matrices were defined in the Matlab. Matrix 𝑇0 4 has been found according to the 

defined matrices. Then parametrical values of our matrices were entered. For finding 

workspace of the system Q angle values are assigned randomly with command of : 

𝑄İ=(-6.28*rand(i)) 

Random angle values given in matlab as :  

q1=(-6.28*rand(1)) q2=(6.28*rand(1)) q3=(-6.28*rand(1)) q4=0 

Example of finding  𝑇𝑖−1
𝑖 matrices in matlab is shown as: 

% T01 

t01transx = [1  0   0   a01; 0   1   0   0; 0 0   1   0; 0 0   0   1] 

t01rotx = [1    0   0   0; 0 cos(a1) -sin(a1) 0; 0 sin(a1) cos(a1) 0; 0    0   0   1] 

t01transz = [1  0   0   0; 0 1   0   0; 0 0   1   s1; 0    0   0   1] 

t01rotz = [cos(q1)  -sin(q1) 0  0; sin(q1) cos(q1) 0 0 ;0   0   1   0;0 0 0 1] 

T01=t01transx*t01rotx*t01transz*t01rotz 

After that 𝑇0 4 were found according to defined matrices as: 

𝑇04 = 𝑇01 ∗ 𝑇12 ∗ 𝑇23 ∗ 𝑇34               (2.1) 

Finally plot command of position points were entered which are x, y and z. ‘’hold on’’ 

command was used since there is more than one value in the chart. 

x=T04(1,4)  y=T04(2,4)  z=T04(3,4)  scatter3(x,y,z)  hold on 
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This command were executed many times and workspace is calculated. 

 

 

 

 

 

 

 

 

The SolidWorks design was transferred to the matlab simulation for checking positions 

of the robot arm with respect to the changement of angle values of linkages. Simple 

sections of the simulation model of our robot arm are shown. 

    

 

 

 

 

Figure 2.5 Workspace Analysis Result 

Figure 2.6 Section from the Matlab Simulation 
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After the simulation of the model has started robotic design can be seen in the Matlab. 

Then the control model were handled for linkage joint angels. 

 

 

 

 

 

Angle value of the linkage can be controlled by changing the slider gain.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Slider Gain for Preparing Angle Value of the Link 

Figure 2.8 30 Degree Slider Gain For Preparing Angle Value of Link 

Figure 2.9 30 Degree Slider Gain of Robot Link 
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2.2.2 Forward Kinematics (Direct Task) 

In forward kinematics, the length of each link and the angle of each joint is given and 

I have to calculate the position of any point in the work volume of the robot.  

Direct kinematics involves solving the forward transformation equation to find the 

location of the hand in terms of the angles and displacements between the links.  

Denavit-Hartenberg (DH) method uses the four parameters including ai-1,i,αi-1,i, Si and 

θi, which are the link length, link twist, link offset and joint angle, respectively. 

Transformation matrices will be used as a method for making our direct task. 

Transformation matrices are initially created as Ttx , Trx , Ttz , Trz . These transformation 

matrices should be created with their individual models. These models are shown 

below. 

Transformation matrices of x axes: 

Ttx = (

1 0 0 𝑎𝑖−1,𝑖
0 1 0 0
0 0 1 0
0 0 0 1

)     Trx =(

1 0 0 0
0 𝐶𝑜𝑠(𝛼i-1,i) −𝑆𝑖𝑛(𝛼i-1,i) 0

0 𝑆𝑖𝑛(𝛼i-1,i) 𝐶𝑜𝑠(𝛼i-1,i) 0

0 0 0 1

) 

 

Transformation matrices of z axes: 

  Ttz= (

1 0 0 0
0 1 0 0
0 0 1 𝑆𝑖
0 0 0 1

)          Trz=(

𝐶𝑜𝑠(𝑄𝑖) −𝑆𝑖𝑛(𝑄𝑖) 0 0
𝑆𝑖𝑛(𝑄𝑖) 𝐶𝑜𝑠(𝑄𝑖) 0 0
0 0 1 0
0 0 0 1

) 

For finding 𝑻𝒊−𝟏
𝒊 matrix: 

𝑇𝑖−1
𝑖= 𝑇𝑖−1

𝑖 tx 𝑇𝑖−1
𝑖rx 𝑇𝑖−1

𝑖 tz 𝑇𝑖−1
𝑖rz           (2.1) 

First transformation matrices need to be defined,  𝑇0 1 and then 𝑇0 1matrix will be 

evaluated. 
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  𝑇0 1tx = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)      𝑇0 1rx =(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) 

𝑇0 1tz =(

1 0 0 0
0 1 0 0
0 0 1 76
0 0 0 1

)   𝑇0 1rz=(

0.76402128 0.64519103 0 0
-0.6451910 0.76402128 0 0

0 0 1 0
0 0 0 1

) 

 

𝑻𝟎 𝟏   = 𝑇0 1tx 𝑇0 1rx 𝑇0 1tz 𝑇0 1rz  this matrix will be:                    (2.2) 

𝑇0 1=(

0.764021 0.645191 0 0
-0.64519 0.764021 0 0

0 0 1 76
0 0 0 1

) 

 

Then 𝑻𝟏 𝟐 matrix will be evaluated by using Eq 2.1 with same procedures. 

𝑇1 2tx = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)  𝑇1 2rx=(

1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

) 

𝑇1 2tz =(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)   𝑇1 2rz=(

0.47991728 -0.8773137 0 0
0.8773137 0.47991728 0 0

0 0 1 0
0 0 0 1

) 

𝑇1 2   = 𝑇1 2tx * 𝑇1 2rx * 𝑇1 2tz * 𝑇1 2rz this matrix will be:          (2.3) 

𝑇1 2  = (

0.479917 -0.87731 0 0
0 0 −1 0

0.877314 0.479917 0 0
0 0 0 1

) 

 

 

 



17 

 

After 𝑻𝟐 𝟑  matrix will be evaluated by using Eq 2.1 with same procedures.  

𝑻𝟐 𝟑tx = (

1 0 0 137
0 1 0 0
0 0 1 0
0 0 0 1

)   𝑻𝟐 𝟑rx = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) 

𝑻𝟐 𝟑tz =(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)   𝑻𝟐 𝟑rzm=(

0.0287939 0.9995853 0 0
-0.9995853 0.0287939 0 0

0 0 1 0
0 0 0 1

) 

  

𝑻𝟐 𝟑 = 𝑻𝟐 𝟑tx * 𝑻𝟐 𝟑rx * 𝑻𝟐 𝟑tz * 𝑻𝟐 𝟑rz this matrix will be:                 (2.4) 

𝑻𝟐 𝟑  = (

0.028794 0.999585 0 137
-0.99959 0.028794 0 0

0 0 1 0
0 0 0 1

) 

 

After that 𝑻𝟑 𝟒  matrix will be evaluated by using Eq 2.1 with same procedures. 

𝑻𝟑 𝟒tx = (

1 0 0 100
0 1 0 0
0 0 1 0
0 0 0 1

)   𝑻𝟑 𝟒rx = (

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

) 

𝑻𝟑 𝟒tz = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)     𝑻𝟑 𝟒rz = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)   

𝑻𝟑 𝟒   =  𝑻𝟑 𝟒tx * 𝑻𝟑 𝟒rx * 𝑻𝟑 𝟒tz * 𝑻𝟑 𝟒rz this matrix will be:            (2.5) 

𝑻𝟑 𝟒  = (

1 0 0 100
0 0 1 0
0 -1 0 0
0 0 0 1

) 
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Finally, the position values will be evaluated by using same equation with others.  

𝑻𝟎 𝟒 =  𝑇0 1* 𝑇1 2* 𝑻𝟐 𝟑* 𝑻𝟑 𝟒 this matrix will be:            

(2.6) 

𝑇0 4=  (

0.680566 0.645191 0.347215 118,29
-0.57472 0.764021 -0.29321 -99.892
-0.45446 0 0.890769 150.7463

0 0 0 1

) 

Evaluation of matrix is done that will give the position vectors of the end effector. This 

matrix called as final transformation matrix it is shown in Fig. 3  

 

  

 

 

So the robot arm positions will be: 

x = 118.29 mm  y = -99.89 mm  z =150.74mm 

 

It was checked in the SolidWorks with initial design of the robot. 

 

 

 

 

 

 

 

Figure 2.10 Model of transformation matrix 

Figure 2.11 Position analysis in SolidWorks with conceptual design 
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When the desired position values, defined using SolidWorks measurements, were 

checked and the position values obtained through direct task evaluation using the 

transformation matrices method were evaluated, it was observed that the position 

values were identical. Thus, the direct task was successfully performed. 

In summarize, the desired angles of the robotic arm must be entered into SolidWorks 

in order to determine position values. The SolidWorks position vectors should then be 

checked. The next step is to carry out the direct task using the transformation matrices 

approach, which calls for an understanding of the robotic arm's Denavit-Hartenberg 

(DH) characteristics. Comparison between the two sets of position values is necessary. 

Microsoft Excel macro has created to perform those procedures. 

 

Figure 2.12 Transformation matrices method in Microsoft Excel 

 

 

 

 

After all of those calculations are completed in the mathematic tool and Microsoft 

Excel, C# tool has been developed and forward kinematics has implemented into it. 

Thanks to the tool there is no need to define any other equation or use any external 

item to calculate robot position and control it with the inverse kinematics.  

All matrices are defined in the tool, and each formulations for forward kinematics 

was followed with dynamic parameters. ForwardKinematics function were 

Figure 2.13 Transformation matrix of final position of the robotic arm 
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developed for this purpose, a part of the code snippet for matrix multiplication and 

matrix declaration and UI of the tool with forward kinematics can be seen below. 

try 
{ 
     int rowA = firstMatrix.GetLength(1); 
     int columnA = firstMatrix.GetLength(0); 
     int rowB = secondMatrix.GetLength(1); 
     int columnB = secondMatrix.GetLength(0); 
     double temp = 0; 
     double[,] finalMatrix = new double[rowA, columnB]; 
     for (int i = 0; i < rowA; i++) 
     { 
       for (int j = 0; j < columnB; j++) 
          { 
            temp = 0; 
            for (int k = 0; k < columnA; k++) 
               { 
                 temp += A[i, k] * B[k, j]; 
               } 
               finalMatrix[i, j] = temp; 
          } 
      } 
 
      return finalMatrix; 
 } 
 catch(Exception ex)  
 { 
  MessageBox.Show(ex.Message.ToString()); 
  double[,] nullMatrice = new double[0,1]; 
  return nullMatrice; 

 }      

double[,] translationXZeroOne = new double[4, 4]; 
translationXZeroOne[0, 0] = 1; 
… 
translationXZeroOne[3, 3] = 1;  
 
double[,] rotationXZeroOne = translationXZeroOne; 
double[,] translationZZeroOne = new double[4, 4]; 
translationZZeroOne[0, 0] = 1; 
… 
translationZZeroOne[3, 3] = 1; 
 
double[,] rotationZZeroOne = new double[4, 4]; 
rotationZZeroOne[0, 0] = Math.Cos(Math.PI * firstAngle / 180.0); 
… 
rotationZZeroOne[3, 3] = 1; 
 
double[,] firstResult = MultiplyMatrix(translationXZeroOne, 
rotationXZeroOne); 
double[,] secondResult = MultiplyMatrix(firstResult, 
translationZZeroOne); 
double[,] finalResultTZeroOne = MultiplyMatrix(secondResult, 
rotationZZeroOne); 
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Figure 2.14  Forward & Inverse Kinematics Calculation 

 

2.2.3 Inverse Kinematics 

Inverse kinematics is the opposite of forward kinematics. In inverse kinematics, the 

length of each link and position of the point in work volume is given and the angle of 

each joint has to be calculated. 

Inverse kinematics involves solving the inverse transformation equation to find the 

relationships between the links of the manipulator from the location of the hand in 

space. This is when you have a desired end effector position, but need to know the 

joint angles required to achieve it the inverse position kinematics solves the following 

problem: end effector pose, what are the corresponding joint positions?"  In contrast 

to the forward problem, the solution of the inverse problem is not always unique: the 

same end effector pose can be reached in several configurations, correspond position 

vectors. 

Inverse kinematics is done in modern technical computing program. This program is 

used since it gives possibility to make matrix computing with parametric values. 
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Equations are started to use by defining the matrices of 𝑇0 1 as :  

1

0T  𝑡𝑥 = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)     1

0T  𝑟𝑥 = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
 

1

0T  𝑡𝑧 = (

1 0 0 0
0 1 0 0
0 0 1 76
0 0 0 1

)
 

1

0T  𝑟𝑧 = (

𝐶𝑜𝑠[𝑄1] −𝑆𝑖𝑛[𝑄1] 0 0

𝑆𝑖𝑛[𝑄1] 𝐶𝑜𝑠[𝑄1] 0 0
0 0 1 0
0 0 0 1

)
 

𝑻𝟎 𝟏   =  𝑇0 1tx * 𝑇0 1rx * 𝑇0 1tz* 𝑇0 1rz                                                                                                                                                          

(2.7) 

𝑇0 1 = (

𝐶𝑜𝑠[𝑄1] −𝑆𝑖𝑛[𝑄1] 0 0

𝑆𝑖𝑛[𝑄1] 𝐶𝑜𝑠[𝑄1] 0 0
0 0 1 76
0 0 0 1

) 

As shown in above all of the rest matrices ( 𝑇0 1, 𝑇1 2, 𝑻𝟐 𝟑, 𝑻𝟑 𝟒) can be found with 

same formula. 𝑻𝟎 𝟒 should be found with below formula.  

𝑻𝟎 𝟒 =  𝑇0 1 𝑇1 2 𝑻𝟐 𝟑 𝑻𝟑 𝟒                                

(2.8) 

Whenever all matrices are found, left side of the equation should be found by 

multiplying inverse of the 𝑇0 1. 

T1left = Inverse[ 𝑇0 1]  𝑻𝟎 𝟒                                                                                                     (2.9) 

Eq𝑙𝑒𝑓𝑡 = (

𝑋𝑋𝐶𝑜𝑠[𝑄1] + 𝑋𝑌𝑆𝑖𝑛[𝑄1] 𝑌𝑋𝐶𝑜𝑠[𝑄1] + 𝑌𝑌𝑆𝑖𝑛[𝑄1] 𝑍𝑋𝐶𝑜𝑠[𝑄1] + 𝑍𝑌𝑆𝑖𝑛[𝑄1] 𝑃𝑋𝐶𝑜𝑠[𝑄1] + 𝑃𝑌𝑆𝑖𝑛[𝑄1]

𝑋𝑌𝐶𝑜𝑠[𝑄1] − 𝑋𝑋𝑆𝑖𝑛[𝑄1] 𝑌𝑌𝐶𝑜𝑠[𝑄1] − 𝑌𝑋𝑆𝑖𝑛[𝑄1] 𝑍𝑌𝐶𝑜𝑠[𝑄1] − 𝑍𝑋𝑆𝑖𝑛[𝑄1] 𝑃𝑌𝐶𝑜𝑠[𝑄1] − 𝑃𝑋𝑆𝑖𝑛[𝑄1]
𝑋𝑍 𝑌𝑍 𝑍𝑍 −76 + 𝑃𝑍
0 0 0 1

) 

 

Then the right side of the equation should be calculated without multiplying   matrix 

because it was multiplied by left side of the equation with inverse of this matrix. So, it 
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will be simplified in right side if it is multiplied with inverse of it because when it was 

multiplied inverse matrix of and matrix, unit matrix will be calculated. 

T1right = 𝑇1 2 𝑻𝟐 𝟑 𝑻𝟑 𝟒                                                                                               

(2.10) 

Eq𝑟𝑖𝑔ℎ𝑡 = (

𝐶𝑜𝑠[𝑄2 + 𝑄3] 𝐶𝑜𝑠[𝑄4] −𝐶𝑜𝑠[𝑄2 + 𝑄3] 𝑆𝑖𝑛[𝑄4] −𝑆𝑖𝑛[𝑄2 + 𝑄3] 137𝐶𝑜𝑠[𝑄2] + 100𝐶𝑜𝑠[𝑄2 + 𝑄3]

𝑆𝑖𝑛[𝑄4] 𝐶𝑜𝑠[𝑄4] 0 0

𝐶𝑜𝑠[𝑄4] 𝑆𝑖𝑛[𝑄2 + 𝑄3] −𝑆𝑖𝑛[𝑄2 + 𝑄3] 𝑆𝑖𝑛[𝑄4] 𝐶𝑜𝑠[𝑄2 + 𝑄3] 137𝑆𝑖𝑛[𝑄2] + 100𝑆𝑖𝑛[𝑄2 + 𝑄3]

0 0 0 1

) 

 

After both sides of the equation is calculated, parameters should be found and then Q1 

can be easily calculated. 

3rd column and 2nd row from Fig.10 (Simplified version of left side of our equation) 

and 3rd column and 2nd row again was taken as easiest equalities to start with. 

This equation can be shown below. 

𝑃𝑌𝐶𝑜𝑠[𝑄1] − 𝑃𝑋𝑆𝑖𝑛[𝑄1] = 0             (2.11) 

PY and PX values can be found from Microsoft Excel table because that table 

represents parametrical values of T04 matrix.  

PY = -99  PX=118   

Then Q1 can be calculated from this equation easily for solving this equation ‘Solve’ 

command in mathematica will be used as shown below. 

𝑆𝑜𝑙𝑣𝑒[−99𝐶𝑜𝑠[𝑄1] − 118𝑆𝑖𝑛[𝑄1] == 0, 𝑄1]           (2.12) 

Q1 will be resulted in the mathematica as shown below. 

𝑄1 = −𝐴𝑟𝑐𝑇𝑎𝑛 (
99

118
) =  −0.70127            (2.13) 

Q2 and Q3 values were calculated with 2 equations by 2 unknowns so below equations 

were selected. 

−76 + 150.31 = (136.5 + 100 𝐶𝑜𝑠[𝑄3])𝑆𝑖𝑛[𝑄2] + 100 𝐶𝑜𝑠[𝑄2]𝑆𝑖𝑛[𝑄3]    (2.14) 
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−0.37227 =  𝐶𝑜𝑠[𝑄3]𝑆𝑖𝑛[𝑄2] +  𝐶𝑜𝑠[𝑄2]𝑆𝑖𝑛[𝑄3]                 (2.15) 

With the “Solve” command of the tool by using already founded Q1, Q2 and Q3 are 

calculated. 

𝑄2 = 1.07024   𝑄3 = −1.542 

For calculating Q4, 𝑇1 2 should be found with left and right equations, it was handled 

as same with above and Q4 was calculated as 0. 

In addition to the ForwardKinematics function, InverseKinematics function has been 

also developed to handle inverse kinematics automatically and run servo motors 

accordingly. Desired robot positions can be entered to the textboxes of the tool where 

the end-effector should go, and joint angles will be calculated automatically, with the 

“Run Robot” button it can be controlled. A part of the code snippet can be seen below 

and UI can be checked from the Figure 2.14. 

double firstAngleCalculation = 
(double)Double.Parse(txtPosY.Text)/Double.Parse(txtPosX.Text); 
double firstAngleCalculated = Math.Atan(firstAngleCalculation); 
 
firstJoint.Text = ((180 / Math.PI) * firstAngleCalculated).ToString(); 
 
MathKernel mathKernel = new MathKernel(); 
var firstAngleToVar = firstAngleCalculated.ToString().Replace(',', '.'); 
var solveEquation = "Solve["+txtPosX.Text+"Cos["+ firstAngleToVar + "] + 
"+ txtPosY.Text + "Sin["+ firstAngleToVar + "] == 137 Cos[Q2] + 100 
Cos[Q2] Cos[Q3] - 100 Sin[Q2] Sin[Q3] && -76 + " + txtPosZ.Text+" == 
(136.5 + 100 Cos[Q3]) Sin[Q2] + 100 Cos[Q2] Sin[Q3] , {Q2 , Q3}]"; 
mathKernel.Compute(solveEquation); 
 
string angleTwoPattern = @"Q2\s?\-\>\s?(.*?),"; 
string angleThreePattern = @"Q3\s?\-\>\s?(.*?)}"; 
string input = mathKernel.Result.ToString(); 
RegexOptions options = RegexOptions.Multiline; 
var qTwoRadian = ""; 
var qTwoRadianCheck = ""; 
var counterCheck = 0; 
var qThreeRadian = ""; 
 
foreach (Match m in Regex.Matches(input, angleTwoPattern, options)) 
{ 
qTwoRadianCheck = m.Groups[1].Value; 
if (!qTwoRadianCheck.Contains("I")) 
{ 
qTwoRadian = m.Groups[1].Value; 
qThreeRadian = Regex.Matches(input, angleThreePattern, 
options)[counterCheck].Groups[1].Value; 
break; 
} 
counterCheck++; 
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} 
 
double secondAnleCalculated = double.Parse(qTwoRadian, 
CultureInfo.InvariantCulture); 
double thirdAnleCalculated = double.Parse(qThreeRadian, 
CultureInfo.InvariantCulture); 
 
secondJoint.Text = ((180 / Math.PI) * secondAnleCalculated).ToString(); 
thirdJoint.Text = ((180 / Math.PI) * thirdAnleCalculated).ToString(); 

mathKernel.Dispose(); 

In summarize, both forward and inverse kinematics have been automatized and 

calculated in the C# WinForm tool which was developed for this thesis. It was 

investigated that those processes can be automatized and controlled, and combine with 

the MQTT protocol opportunities for controlling remotely within even different 

network and task automatization. 
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3 Jacobian and Dynamic Analysis of 

the Robot 

3.1 Jacobian Analysis 

It is used when linkage is complicated. The joint angles change to approach the goal 

position and orientation. Jacobian matrices are a super useful tool, and heavily used 

throughout robotics and control theory. Basically, a Jacobian defines the dynamic 

relationship between two different representations of a system. For example, if I have 

a 2-link robotic arm, there are two obvious ways to describe its current position: 1- the 

end-effector position and orientation which I will denote x, and 2- as the set of joint 

angles which I will denote  q. The Jacobian for this system relates how movement of 

the elements of q causes movement of the elements of x. Jacobian can be thought as a 

transform matrix for velocity. Formally, a Jacobian is a set of partial differential 

equations: 

𝒙
.
= 𝑱. 𝒒

.
                        (3.1) 

where 𝑥
.
 and 𝑞

.
represent the time derivatives of x and q. This tells that the end-effector 

velocity is equal to the Jacobian, 𝐽, multiplied by the joint angle velocity. 

3.1.1.1 Building the Jacobian 

First, the relationship between the position of the end-effector and the robot’s joint 

angles should be defined. Distances are known from the shoulder to the elbow, and 

elbow to the wrist, as well as the joint angles, where the end-effector is relative to a 

base coordinate frame should be figured out. Those forward transformation matrices 

should be used.  

That transformation matrices allow a given point to be transformed between different 

reference frames. In this case, the position of the end-effector relative to the second 

joint of the robot arm is known, but where it is relative to the base reference frame (the 

first joint reference frame in this case) is of interest. So, the rotation part of this matrix 

is straight-forward to define can be shown as. 
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𝑹𝟎 𝒊−𝟏 = (
a b c
d e f
g h i

) 

The translation part of the transformation matrices is a little different than before 

because reference frame 1 changes as a function of the angle of the previous joint’s 

angles. From trigonometry, given a vector of length r and an angle q the x position of 

the end point is defined r.cos(q), and the y position is r.sin(q). And the z position of 

the end point is defined with offset of our robotic arm. It can be shown below. 

𝒓𝑖−1
𝑖 = (

𝑎𝑖−1,𝑖𝐶𝑜𝑠(𝑄𝑖)

𝑎𝑖−1,𝑖𝑆𝑖𝑛(𝑄𝑖)

𝑆𝑖

) 

Then zi-1 is a unit vector along ‘i’th joint axis, and *1

n

i p− is a vector defined from the 

origin of the (i-1)th link frame. 

zi-1 = 1

0

−iR (
0
0
1
)                      (3.2)

  

*1

n

i p−  = 1

0

−iR 𝑟𝑖−1
𝑖 + *

n

i p                 (3.3) 

Before these formulas are applied, a new Denavit-Hartenberg (DH) table should be 

created for finding same positions where it was found in direct task before.  

 

 

 

 

 

𝑇𝑖−1
𝑖= 𝑇𝑖−1

𝑖 tx * 𝑇𝑖−1
𝑖rx * 𝑇𝑖−1

𝑖 tz* 𝑇𝑖−1
𝑖rz (Eq. 1) formulation was used at this procedure 

but now with respect to the new Denavit-Hartenberg table. 

Figure 3.1 DH table for Jacobian Analysis 
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𝑇𝑖−1
𝑖= 𝑇𝑖−1

𝑖 tz* 𝑇𝑖−1
𝑖rz* 𝑇𝑖−1

𝑖 tx * 𝑇𝑖−1
𝑖rx formulation should be used with respect to this 

formulation. 

𝑻𝟎 𝟏  = 𝑇0 1tz 𝑇
0
1rz 𝑇

0
1tx 𝑇0 1rx this matrix will be:             (3.4) 

𝑇0 1=(

 Cos(Q1) 0 Sin(Q1) 0
Sin(Q1) 0 -Cos(Q1) 0
0 1 0 76
0 0 0 1

) 

𝑇1 2   = 𝑇1 2tz * 𝑇1 2rz * 𝑇1 2tx * 𝑇1 2rx this matrix will be:            (3.5) 

𝑇1 2  = (

 Cos(Q2) -Sin(Q2) 0  137 Cos(Q2)
Sin(Q2)  Cos(Q2) 0  137 Sin(Q2)
0 0 1 0
0 0 0 1

) 

𝑻𝟐 𝟑   = 𝑻𝟐 𝟑tz * 𝑻𝟐 𝟑rz * 𝑻𝟐 𝟑tx * 𝑻𝟐 𝟑rx this matrix will be:            (3.6) 

𝑻𝟐 𝟑  = (

 Cos(Q3) -Sin(Q3) 0  100 Cos(Q3)
Sin(Q3)  Cos(Q3) 0  100 Sin(Q3)
0 0 1 0
0 0 0 1

) 

 

𝑻𝟑 𝟒  = 𝑻𝟑 𝟒tz * 𝑻𝟑 𝟒rz * 𝑻𝟑 𝟒tx * 𝑻𝟑 𝟒rx this matrix will be:            (3.7) 

𝑻𝟑 𝟒  = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) 
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𝑻𝟎 𝟒 =  𝑇0 1 𝑇1 2 𝑻𝟐 𝟑 𝑻𝟑 𝟒 this matrix will be:                 (3.8) 

 𝑇0 4= (

0.680566 0.645191 0.347215 118.29
-0.57472 0.764021 -0.29321 -99.892
-0.45446 0 0.890769 150.7463

0 0 0 1

)

 

So, it can be easily seen that our final transformation matrix is the same which was 

found in direct task analysis. This shows that the new Denavit-Hartenberg table was 

created correctly, and proper equations was applied. 

After finishing procedures of the new method of Denavit-Hartenberg solution 

𝑅𝑖−1
𝑖matrices can be found. That matrices are the rotation matrix part of 𝑇0 1 2

1T 𝑻𝟐 𝟑 

and
 
𝑻𝟑 𝟒 

𝑅0 1= (
 Cos[Q1] 0  Sin[Q1]
 Sin[Q1] 0  -Cos[Q1]
0 1 0

) 

For 2

0R  and 3

0R matrices 2

0T and 3

0T
 matrices should be found. Because 2

0R  and 3

0R  

will be rotation matrices of 2

0T and 3

0T
 matrices. Those matrices can be found as same 

what was done for 4

0T . One example can be seen on below. 

Rotation matrices will be found as shown on below. 

     𝑅0 2= (

 Cos(Q1) Cos(Q2)  -Cos(Q1) Sin(Q2)  Sin(Q1)

 Cos(Q2) Sin(Q1)  -Sin(Q1) Sin(Q2)  -Cos(Q1)
Sin(Q2)  Cos(Q2) 0

) 

𝑅0 3= (

 Cos(Q1) Cos(Q2 + Q3)  -Sin(Q1)  -Cos(Q1) Sin(Q2 + Q3)
 Cos(Q2 + Q3) Sin(Q1)  Cos(Q1)  -Sin(Q1)Sin(Q2 + Q3)

Sin(Q2 + Q3) 0 Cos(Q2 + Q3)
 ) 
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 i

i r1−

 variables should be also defined. 

𝜞𝟎𝟏 = (
0
0
76
)

 

𝜞𝟏𝟐 = (
137𝐶𝑜𝑠[𝑄2]
137𝑆𝑖𝑛[𝑄2]

0

) 

 

𝜞𝟏𝟐 = (
100𝐶𝑜𝑠[𝑄3]
100𝑆𝑖𝑛[𝑄3]

0

)   𝜞𝟑𝟒 = (
0
0
0
)

 

After finding those matrices below equation should be used. 

*1

n

i p−

 = 1

0

−iR
𝒓𝒊−𝟏
𝒊 + 

*

n

i p
                      (3.9) 

There should be started with giving i=4 and n always equal to 4 so the first formulation.

*

4

3 p  = 3

0R
4

3r  + 
*

4

4 p               (3.10) 

Here 
*

4

4 p = 0  𝒓3 4= 0 so it can be measured that 
*

4

3 p  = 0.  

After finding 
*

4

3 p  matrix it should be given as i = 3 and *

3

2 p  will be found. 

*

4

2 p  = 2

0R 𝒓2 3 + 
*

4

3 p              (3.11) 

Here 
*

4

3 p = 0 and 𝑟2 3 and 𝑅0 2 are also known as: 

𝑅0 2 = (

 Cos(Q1) Cos(Q2)  -Cos(Q1) Sin(Q2)  Sin(Q1)
 Cos(Q2) Sin(Q1)  -Sin(Q1) Sin(Q2)  -Cos(Q1)

Sin(Q2)  Cos(Q2) 0
)

 

After multiplying 𝑟2 3 and 𝑅0 3, 
*

4

2 p  can be found as:  

*

4

2 p = (

100 𝐶𝑜𝑠[𝑄1] 𝐶𝑜𝑠[𝑄2 + 𝑄3]

100 𝐶𝑜𝑠[𝑄2 + 𝑄3] 𝑆𝑖𝑛[𝑄1]
100 𝑆𝑖𝑛[𝑄2 + 𝑄3]

) 
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*1

n

i p−

 = 1

0

−iR 𝑟𝑖−1
𝑖 + 

*

n

i p
 formulation will be applied  for finding *

4

1 p   by 

giving i=2:  

*

4

1 p  = 1

0R 𝑟1 2 + 
*

4

2 p               (3.12) 

*

4

1 p = (

𝐶𝑜𝑠[𝑄1](137 𝐶𝑜𝑠[𝑄2] + 100 𝐶𝑜𝑠[𝑄2 + 𝑄3])

(137 𝐶𝑜𝑠[𝑄2] + 100 𝐶𝑜𝑠[𝑄2 + 𝑄3]) 𝑆𝑖𝑛[𝑄1]

137 𝑆𝑖𝑛 [𝑄2] + 100 𝑆𝑖𝑛[𝑄2 + 𝑄3]

) 

 

With respect to the formulation if i=1 is given 
*

4

1 p = *

4

0 p  So *

4

0 p  will be as same.  

After finding all *1

n

i p−  values as a vector defined from the origin of the (i-1)th link 

frame zi-1 should be found which is a unit vector along ‘i’th joint axis.  

𝑍0 = (
0
0
1
)   

𝑍1 =  𝑅01. (
0
0
1
) =   (

𝑆𝑖𝑛[𝑄1]
−𝐶𝑜𝑠[𝑄1]

0

)             (3.13) 

𝑍2 =  𝑅02. (
0
0
1
) =   (

𝑆𝑖𝑛[𝑄1]
−𝐶𝑜𝑠[𝑄1]

0

)             (3.14) 

𝑍3 =  𝑅03. (
0
0
1
) =   (

−𝐶𝑜𝑠[𝑄1] 𝑆𝑖𝑛[𝑄2 + 𝑄3]

−𝑆𝑖𝑛[𝑄1] 𝑆𝑖𝑛[𝑄2 + 𝑄3]

𝐶𝑜𝑠[𝑄2 + 𝑄3]

)          (3.15)  

All these desired matrices for building the final version of Jacobian matrix is defined 

and calculated. Those needs to be built up as shown below:  

J = [J1,J2,J3,J4]     

Those J1,J2,J3,J4 matrices can be written individually by using the below model.  
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Ji = 














−

−

−

1

*1

1

i

n

i

i

Z

PxZ
 for revolute joint 

Cross products will be handled and Jacobian matrices will be found as shown below. 

J1=

(

 
 
 

 -(137 Cos(Q2) + 100 Cos(Q2 + Q3)) Sin(Q1)
 Cos(Q1) (137 Cos(Q2) + 100 Cos(Q2 + Q3))

0
0
0
1 )

 
 
 

   

J2= 

(

 
 
 

 -Cos(Q1) (137 Sin(Q2) + 100 Sin(Q2 + Q3))
 -Sin(Q1) (137 Sin(Q2) + 100 Sin(Q2 + Q3))

 137 Cos(Q2) + 100 Cos(Q2 + Q3)
Sin(Q1)
-Cos(Q1)

0 )

 
 
 

 

J3=

(

 
 
 

 -100 Cos(Q1) Sin(Q2 + Q3)
 -100 Sin(Q1) Sin(Q2 + Q3)

100 Cos(Q2 + Q3)
Sin(Q1)
-Cos(Q1)

0 )

 
 
 

 

J4=

(

 
 
 

 -(137 Cos(Q2) + 100 Cos(Q2 + Q3)) Sin(Q1)
 Cos(Q1) (137 Cos(Q2) + 100 Cos(Q2 + Q3))

0
 -Cos (Q1) Sin(Q2 + Q3)
 -Sin(Q1) Sin(Q2 + Q3)

 Cos(Q2 + Q3) )

 
 
 

       

3.2 Dynamic Analysis 

In a dynamic model of a system there are two main aspects with which one is 

concerned: motion and forces. The motion of a system is called its trajectory and 

consists of a sequence of desired positions, velocities, and accelerations of some point 

or points in the system. Forces are usually characterized as internal (or constraint) 

forces and external (or applied) forces. The external forces are the ones which cause 

motion. In robotics, a dynamic robot model usually describes relationships between 

robot motion and forces causing that motion, so that given one of these quantities, 

other one can be determined.  
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There are, therefore, the following problems to be considered forward Dynamics and 

inverse Dynamics. In principle, solving forward or inverse dynamics for rigid-link 

robot manipulators presents no difficulty.  

A robot manipulator is just a system of rigid bodies, and the equations of motion of 

such systems have been known for a long time. The real problem in robot dynamics is 

a practical one, namely, that of finding formulations for the equations of motion that 

lead to efficient computational algorithms. To derive these equations, I can use well 

established procedures from classical mechanics such as those based on the equations 

of Newton and Euler, Euler and Lagrange, Kane, etc.  

The Newton and Euler method will be used to solve dynamic analysis [5]. 

3.2.1 Forward Dynamic Analysis 

The Forward or direct dynamics problem is one where the forces which act on a robot 

are given and the resulting motion will be solved. The importance of forward dynamics 

in robotics stems mainly from its use in simulation. Simulation of robot motion is a 

way of testing control strategies or manipulator designs prior to the expensive task of 

working with the actual manipulator. 

First, I started to compute angular velocity, angular acceleration, linear velocity, and 

linear acceleration of each link in terms of its preceding link. These velocities can be 

computed as starting at the first moving link and ending at end-effector link. 

a) Angular Velocity Propagation  

Due to serial construction of the manipulator, the angular velocity of link i relative to 

link i-1 is equal to zi-1𝑄𝑖
,

for revolute joint, where zi-1 denotes a unit vector pointing 

along the ith joint axes. Angular velocity of i link can be written as  

𝜔𝑖= 𝜔𝑖−1+ zi-1𝑄𝑖
,

               (3.16) 

𝑧0 = (
0
0
1
) 

𝑅01 = (
𝐶𝑜𝑠[𝑄1] 0 𝑆𝑖𝑛[𝑄1]
𝑆𝑖𝑛[𝑄1] 0 −𝐶𝑜𝑠[𝑄1]
0 1 0

) 
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𝑧1 = 𝑅01 (
0
0
1
)               (3.17) 

After finding all of the Zi-1 matrices, below formula should be applied. 

𝜔İ = 𝑍İ−1 𝑄𝑖𝑑               (3.18) 

This will be applied from i=0 to i=4, after all of those are found it should be expressed 

in the ith link frame with the below formula. 

𝑤𝑖 𝑖= 𝑅𝑖 𝑖−1 ( 𝑤𝑖−1
𝑖−1+ 1

1

−

−

i

i z 𝑄𝑖
,

)             (3.19) 

First 𝑅𝑖 𝑖−1 should be defined Then 𝑧𝑖−1
𝑖−1 will be called as Znn. Angular velocities 

of ith link frame will found as: 

𝑅34𝑛 = (
𝐶𝑜𝑠[𝑄4] 𝑆𝑖𝑛[𝑄4] 0
−𝑆𝑖𝑛[𝑄4] 𝐶𝑜𝑠[𝑄4] 0

0 0 1

) 

𝑍𝑛𝑛 = (
0
0
1
) 

𝜔11 = 𝑅01𝑛. (𝑍𝑛𝑛 𝑄𝑑1)            

𝜔22 = 𝑅12𝑛. (𝜔11 + 𝑍𝑛𝑛 𝑄𝑑2)            

b) Angular Acceleration Propagation  

That will be link i is obtained by using the below equation. 

𝜔𝑖
.

= 𝜔𝑖−1
.

+ zi-1𝑄𝑖
..

+ 𝜔𝑖−1 × zi-1𝑄𝑖
,

             (3.20) 

𝜔𝑖
.

 will be defined as Wd1 in mathematic tool. Below will be calculated. 

𝜔𝑑1 = 𝑍0𝑄𝑑𝑑1                

𝑍1𝑄𝑑2 = 𝑍1𝑄𝑑2               

𝜔𝑑2 = 𝜔𝑑1 + 𝑍1. 𝑄𝑑𝑑2 + 𝐶𝑟𝑜𝑠𝑠 [𝜔𝑑1, 𝑍1𝑄𝑑2]      

Then this should be expressed in the ith link frame. 

𝜔𝑖
.

= 𝑅𝑖 𝑖−1 ( 𝜔𝑖−1
𝑖−1

.

+ zi-1𝑄𝑖
..

+ 𝜔𝑖−1
𝑖−1 X 1

1

−

−

i

i z 𝑄𝑖
,

)          (3.21) 
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𝜔𝑑11 = 𝑅01𝑛. (𝑍𝑛𝑛𝑄𝑑𝑑1)             

𝜔𝑑22 =  𝑅12𝑛. (𝜔𝑑11 + 𝑍𝑛𝑛 𝑄𝑑𝑑2 + 𝐶𝑟𝑜𝑠𝑠 [𝜔11, 𝑍𝑛𝑛 𝑄𝑑2]) 

𝜔d11, 𝜔d22, 𝜔d33 and 𝜔d44 angular acceleration were found as same as above. 

c) Linear Velocity Propagation 

It needs to be considered as if the ith joint is a revolute joint, link i does not translate 

along the ith joint axis. Then the velocity can be written as: 

𝑉𝑖 = 𝑉𝑖−1 + 𝜔𝑖 x 𝑟𝑖                      (3.22) 

First, 𝑟𝑖 should be defined to for the Eq 3.22: 

𝑟2 = (
𝑎12 𝐶𝑜𝑠[𝑄2]
𝑎12 𝑆𝑖𝑛[𝑄2]

0

)    𝑟3 = (
𝑎23 𝐶𝑜𝑠[𝑄3]
𝑎23 𝑆𝑖𝑛[𝑄3]

0

) 

 

Then linear velocity can be found by using Eq. 3.22 which can be shown as below: 

𝑉1 =  𝐶𝑟𝑜𝑠𝑠[𝜔1, 𝑟1] 

V2 = V1 + Cross [𝜔2, r2]   same formula for the V3 and V4. 

Then those again need to be expressed in the ith link frame as it was done before for 

angular velocity and angular acceleration. This expression will be shown as:  

=i

iV 𝑅𝑖 𝑖−1 ( 𝑉𝑖−1
𝑖−1+ 𝜔𝑖 𝑖 x 𝑟𝑖 𝑖)            (3.23) 

𝑟𝑖 𝑖 is defined as rii in mathematic tool for finding rii constant vector for a revolute joint. 

These will be found as:  

𝑟𝑖 𝑖 = (

𝑎𝑖
𝑆𝑖𝑆𝑖𝑛𝛼𝑖
𝑆𝑖𝐶𝑜𝑠𝛼𝑖

)                 (3.24) 

Each of them was found parametrically and Eq 3.23 was applied for linear velocity ith 

link. 

𝑟11 = (
0
𝑆1
0
)  𝑟11 = (

𝑎12
0
0
)  𝑟33 = (

𝑎23
0
0
)  𝑟44 = (

0
0
0
)   
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𝑉11 =  𝐶𝑟𝑜𝑠𝑠 [𝜔11, 𝑟11] 

𝑉22 =  𝑅12𝑛. 𝑉11 +  𝐶𝑟𝑜𝑠𝑠[𝜔22, 𝑟22] same formula for the V3 and V4. 

 

d) Linear Acceleration Propagation 

Linear acceleration of the frame i can be obtained by differentiating Eq3.24 with 

respect to time. It will be shown as:  

=iV
.

𝑉𝑖−1
.

+ 𝜔𝑖
.

x 𝑟𝑖 + 𝜔𝑖 𝑥 ( 𝜔𝑖 x 𝑟𝑖)          

(3.25) 

𝜔2𝑟2 =  𝐶𝑟𝑜𝑠𝑠[𝜔2, 𝑟2] 

𝑉𝑑2 =  𝐶𝑟𝑜𝑠𝑠[𝜔𝑑2, 𝑟2]  +  𝐶𝑟𝑜𝑠𝑠[𝜔2,𝜔2𝑟2] 

𝜔3𝑟3 =  𝐶𝑟𝑜𝑠𝑠 [𝜔3, 𝑟3] 

𝑉𝑑3 =  𝑉𝑑2 +   𝐶𝑟𝑜𝑠𝑠[𝜔𝑑3, 𝑟3]  +  𝐶𝑟𝑜𝑠𝑠[𝜔3,𝜔3𝑟3] 

𝜔3𝑟3 =  𝐶𝑟𝑜𝑠𝑠[𝜔4, 𝑟4] 

Vd4 will be equal to Vd3 since 𝜔3r3 was found as 0. 

These need to expressed ith link frame as same before for the angular velocity and 

angular acceleration. This expression will be shown as: 

𝑉𝑖
.

𝑖 = 1−i

iR 𝑉𝑖−1
𝑖−1

.

+ 𝜔𝑖 𝑖

.

x 𝑟𝑖 𝑖 + 𝜔𝑖 𝑖 𝑥 ( 𝜔𝑖 𝑖 x 𝑟𝑖 𝑖)         (3.26) 

𝑉𝑑22 =  𝐶𝑟𝑜𝑠𝑠[𝜔𝑑22, 𝑟22]  +  𝐶𝑟𝑜𝑠𝑠[𝜔22,𝜔22𝑟22] 

𝜔3𝑟33 =  𝐶𝑟𝑜𝑠𝑠[𝜔33, 𝑟33] 

𝑉𝑑33 =  𝑅23𝑛. 𝑉𝑑22 +  𝐶𝑟𝑜𝑠𝑠[𝜔𝑑33, 𝑟33]  +  𝐶𝑟𝑜𝑠𝑠[𝜔33,𝜔33𝑟33] 

e) Linear Acceleration of the Center of Mass 

=ci
iV

.

𝑉𝑖
.

𝑖+ 𝜔𝑖 𝑖

.

𝑥 𝑟𝑖 𝑐𝑖 + 𝜔𝑖 𝑖 𝑥 ( 𝜔𝑖 𝑖
x 𝑟𝑖 𝑐𝑖)          (3.27) 
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First, 𝑟𝑖 𝑐𝑖, position vector of the center of mass of the link with i link frame is shown: 

𝑟𝑖 𝑐𝑖  =  −𝒂𝒊/𝟐(
𝑪𝒐𝒔𝑸𝒊
𝑺𝒊𝒏𝑸𝒊
𝟎

) 

Then, Eq 3.27 will be applied as shown below. 

𝜔22𝑐22 =  𝐶𝑟𝑜𝑠𝑠[𝜔22, 𝑟𝑐22] 

𝑉𝑑𝑐22 =  𝐶𝑟𝑜𝑠𝑠[𝜔𝑑22, 𝑟𝑐22]  +  𝐶𝑟𝑜𝑠𝑠[𝜔22,𝜔22𝑟𝑐22] 

𝑊33𝑟33 =  𝐶𝑟𝑜𝑠𝑠[𝜔33, 𝑟𝑐33] 

𝑉𝑑𝑐33 =  𝑉𝑑𝑐22 + 𝐶𝑟𝑜𝑠𝑠[𝜔𝑑33, 𝑟𝑐33]  +  𝐶𝑟𝑜𝑠𝑠[𝜔33,𝜔33𝑟𝑐33] 

Since the 𝜔44rc44 equals to zero, Vdc44 will be as same with Vdc33. 

f) Acceleration of the Gravity 

As a final, the acceleration of gravity is transformed from the (i-1) link frame to the ith 

in frame as: 

=gi

𝑅𝑖 𝑖−1 𝑔𝑖−1                (3.28) 

𝑔1 =  𝑅01𝑛. (
0
0
𝑔
) 

𝑔2 =  𝑅12𝑛. 𝑔1  

g3 and g4 will be found with the same formula as above. 

3.2.2 Backward Dynamic Analysis 

When the velocities and accelerations of the links are found, the joint forces can be 

computed at a time starting from the end-effector link and ending at the base link.  

First inertia force exerted at the center of mass link i should be computed as:  

 𝑓𝑖 𝑖
∗= 𝑚𝑖 + ci

i

V
.

                  (3.29) 
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𝑓𝑠11 =  −𝑚1𝑉𝑑𝑐11 

𝑓𝑠22 =  −𝑚2𝑑𝑐22 

Inertia forces of the fs11, fs22, fs33 and fs44 will be found as same shown above. 

After finding inertia forces of each i link. System should be solved recursively, 

starting from the end-effector link. For the end-effector link, represent the end-

effector output force. This output force is considered and defined as below: 

𝑓045 =   (
0
0

−𝑚𝑔
) 

After defining the output force, recursive function equation should be defined. 

𝑓𝑖 𝑖,𝑖−1= 𝑓𝑖 𝑖+1,𝑖- im 𝑔𝑖 - 𝑓𝑖 𝑖
∗             (3.30) 

When the reaction forces are computed in the ith link frame, these are converted into 

the (i-1)th link by following transformations:  

𝑓𝑖−1
𝑖,𝑖−1= i

i R1− 𝑓𝑖 𝑖,𝑖−1                      (3.31) 

As a result of the definition of the all these computing steps it should be started by 

finding an external output force of end-effector as:  

𝑓445 =  𝑅04. 𝑓045 

𝑓454 =  −𝑓445 

Finally, all of those should be calculated recursively, finding joint forces can be shown 

as:  

𝑚4𝑔4 =  𝑚4 𝑔4 

𝑓443 =  𝑓454 –  𝑚4𝑔4 –  𝑓𝑠44 

𝑓343 =  𝑅34. 𝑓443 
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Same formulas should be applied until the f110 joint force, and then, as same 

processes should be implemented for the inertia moment exerted at the center of the 

mass of the link i: 

𝑛𝑖 𝑖
∗ = - i

i I 𝜔𝑖 𝑖

.

- 𝜔𝑖 𝑖𝑥 ( i

i I 𝜔𝑖 𝑖)            (3.32) 

For finding inertia moment of the system inertia matrix of link i about its center of 

mass coordinate frame should be defined as:  

𝐼𝑖 𝑖= 𝑚𝑖𝑎𝑖
2/12 (

0 0 0
0 1 0
0 0 1

)             (3.33) 

By using the Eq. 3.22 inertia moments of center of mass of  link i can be calculated.  

𝑛𝑠11 =  −𝐶𝑟𝑜𝑠𝑠[𝜔11, 𝐼11𝜔11] 

𝐼22𝜔22 =  𝐼22. 𝜔22 

𝐼22𝜔𝑑22 =  𝐼22. 𝜔𝑑22 

𝑛𝑠22 =  −𝐼22 . 𝜔𝑑22 –  𝐶𝑟𝑜𝑠𝑠[𝜔22, 𝐼22𝜔22] 

𝐼33𝜔33 =  𝐼33. 𝜔33  

The rest of the inertia moments will be found parametrically as same on above. 

After finding the inertia moment of each i link. System should be resolved recursively, 

starting from the end-effector link. For the end-effector link, 𝑛𝑖 𝑖+1,𝑖 represent the end-

effector output force. This output moment is considered as 0. 

𝑛𝑖 𝑖,𝑖−1= 𝑛𝑖 𝑖+1,𝑖+ ( 𝑟𝑖 𝑖+ 𝑟𝑖 𝑐𝑖) 𝑥 𝑓𝑖 𝑖,𝑖−1 - 𝑟
𝑖
𝑐𝑖 x 𝑓𝑖 𝑖+1,𝑖- 𝑛𝑖 𝑖

∗       (3.34) 

When the reaction moments are computed in the ith link frame, these are converted into 

the (i-1)th link by following transformations:  

𝑛𝑖−1
𝑖,𝑖−1= i

i R1− 𝑛𝑖 𝑖,𝑖−1              (3.35) 
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Finally, it can easily computed by keeping going these procedures. 

𝑛443 =  𝐶𝑟𝑜𝑠𝑠[𝑟44𝑟𝑐44, 𝑓443] –  𝐶𝑟𝑜𝑠𝑠[𝑟𝑐44, 𝑓454]  −  𝑛𝑠44 

𝑛343 =  𝑅34. 𝑛443 

𝑛332 =  𝑛343 +  𝐶𝑟𝑜𝑠𝑠[𝑟33𝑟𝑐33, 𝑓332] –  𝐶𝑟𝑜𝑠𝑠[𝑟𝑐33, 𝑓343] –  𝑛𝑠33 

Joint moments have been calculated as same with the formulas and followings shown 

in above until the n010. 

3.2.3 Determination of the Torques of the Motors 

Actuator torques or forces 𝑇𝑖, are obtained by projecting the forces of constraint onto 

their corresponding joint axes, that can be shown as:  

𝑇𝑖 = 
T

ii

i n 1,

1

−

− 𝑧𝑖−1
𝑖−1                  (3.36) 

First torque values should be calculated parametrically. Then unknown values can be 

entered by using the design values.  

T1 = {−Sin[Q2]Sin[Q3](−
1

4
a12a23m3Qdd2 −

1

2
a12a23m4Qdd2 −

1

4
a232m3Qdd1Cos[Q2]Cos[Q3] −

1

2
a232m4Qdd1Cos[Q2]Cos[Q3] −

1

4
a12a23m3Qd12Cos[Q2]Sin[Q2] −

1

2
a12a23m4Qd12Cos[Q2]Sin[Q2] +

5

12
a232m3Qd1Qd2Cos[Q3]Sin[Q2] + a232m4Qd1Qd2Cos[Q3]Sin[Q2] +

5

12
a232m3Qd1Qd3Cos[Q3]Sin[Q2] + a232m4Qd1Qd3Cos[Q3]Sin[Q2] +

5

12
a232m3Qd1Qd2Cos[Q2]Sin[Q3] + a232m4Qd1Qd2Cos[Q2]Sin[Q3] +

5

12
a232m3Qd1Qd3Cos[Q2]Sin[Q3] + a232m4Qd1Qd3Cos[Q2]Sin[Q3] +

1

4
a232m3Qdd1Sin[Q2]Sin[Q3] +

1

2
a232m4Qdd1Sin[Q2]Sin[Q3] +

1

12
a232m3(Cos[Q3](Qdd1Cos[Q2] − Qd1Qd2Sin[Q2] − Qd1Qd3Sin[Q2]) −

(Qd1Qd2Cos[Q2] + Qd1Qd3Cos[Q2] + Qdd1Sin[Q2])Sin[Q3]) −

a23𝑔𝑚Sin[Q1]Sin[Q2 + Q3] + a23𝑔m4Cos[Q3]Sin[Q2]Sin[Q4] +
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a23𝑔m4Cos[Q2]Sin[Q3]Sin[Q4]) + Cos[Q2](−
1

2
a122m3Qdd2 −

1

2
a122m4Qdd2 −

1

4
a122m2Qdd1Cos[Q2] −

1

2
a12a23m3Qdd1Cos[Q2]Cos[Q3] −

1

2
a12a23m4Qdd1Cos[Q2]Cos[Q3] +

5

12
a122m2Qd1Qd2Sin[Q2] −

1

2
a122m3Qd12Cos[Q2]Sin[Q2] −

1

2
a122m4Qd12Cos[Q2]Sin[Q2] +

a12a23m3Qd1Qd2Cos[Q3]Sin[Q2] + a12a23m4Qd1Qd2Cos[Q3]Sin[Q2] +

a12a23m3Qd1Qd3Cos[Q3]Sin[Q2] + a12a23m4Qd1Qd3Cos[Q3]Sin[Q2] +

1

12
a122m2(Qdd1Cos[Q2] − Qd1Qd2Sin[Q2]) +

a12a23m3Qd1Qd2Cos[Q2]Sin[Q3] + a12a23m4Qd1Qd2Cos[Q2]Sin[Q3] +

a12a23m3Qd1Qd3Cos[Q2]Sin[Q3] + a12a23m4Qd1Qd3Cos[Q2]Sin[Q3] +

1

2
a12a23m3Qdd1Sin[Q2]Sin[Q3] +

1

2
a12a23m4Qdd1Sin[Q2]Sin[Q3] −

a12𝑔𝑚Sin[Q1]Sin[Q2 + Q3] + a12𝑔m4Cos[Q3]Sin[Q2]Sin[Q4] +

a12𝑔m4Cos[Q2]Sin[Q3]Sin[Q4] + Cos[Q3](−
1

4
a12a23m3Qdd2 −

1

2
a12a23m4Qdd2 −

1

4
a232m3Qdd1Cos[Q2]Cos[Q3] −

1

2
a232m4Qdd1Cos[Q2]Cos[Q3] −

1

4
a12a23m3Qd12Cos[Q2]Sin[Q2] −

1

2
a12a23m4Qd12Cos[Q2]Sin[Q2] +

5

12
a232m3Qd1Qd2Cos[Q3]Sin[Q2] +

a232m4Qd1Qd2Cos[Q3]Sin[Q2] +
5

12
a232m3Qd1Qd3Cos[Q3]Sin[Q2] +

a232m4Qd1Qd3Cos[Q3]Sin[Q2] +
5

12
a232m3Qd1Qd2Cos[Q2]Sin[Q3] +

a232m4Qd1Qd2Cos[Q2]Sin[Q3] +
5

12
a232m3Qd1Qd3Cos[Q2]Sin[Q3] +

a232m4Qd1Qd3Cos[Q2]Sin[Q3] +
1

4
a232m3Qdd1Sin[Q2]Sin[Q3] +

1

2
a232m4Qdd1Sin[Q2]Sin[Q3] +

1

12
a232m3(Cos[Q3](Qdd1Cos[Q2] −

Qd1Qd2Sin[Q2] − Qd1Qd3Sin[Q2]) − (Qd1Qd2Cos[Q2] + Qd1Qd3Cos[Q2] +

Qdd1Sin[Q2])Sin[Q3]) − a23𝑔𝑚Sin[Q1]Sin[Q2 + Q3] +

a23𝑔m4Cos[Q3]Sin[Q2]Sin[Q4] + a23𝑔m4Cos[Q2]Sin[Q3]Sin[Q4]))}        (3.37) 
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3.2.4 Selection of The Motors 

For selection of exact motor numerical values will be found. Torque1 value will be 

only shown and selection of motor for this link. By using the inverse kinematic 

analysis joint angles are found. Weight of the links were found using the SolidWorks. 

  

 

 

 

 

 

 

 

 

 

 

 

 

𝑇0= −0.000359829 𝑁𝑚 

𝑇1= −3.02901𝑁𝑚 

𝑇2= −0.860866 𝑁𝑚 

The servo motor usage is decided in the robot. These are listed in below. 

Figure 3.2 Torque values of the robotic arm 

Figure 3.3 One of the torque value 
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For the 𝑇0value most proper servo motor is MG996R. Datasheet of this servo motor 

shown as[6]: 

• Operating voltage: 4.8 ~ 6.6V   

• Holding Torque: 9.4kg/cm(4.8v)-11kg/cm(6.0v) 

• It holds 10mA current at idle. No-load current: 170mA 

• Holding current: 1400mA    

• Weight: 55g   

• Size: 40.9×20×42.7mm 

For the 𝑇1value most proper servo motor is DS3230MG. Datasheet of this servo motor 

shown as[7]: 

• Holding Torque (5V): 27 kg / cm   

• Holding Torque (6.8 V): 32 kg / cm 

• Speed: 0.16 sec / 60 ° (5V) / 0.12 sec / 60 ° (6.8 V) 

• Operating voltage: 4.8 ~ 7.2 DC 

• Weight: 65 g 

• Size: 40 x 20 x 40.5 mm 

For the 𝑇2 value most proper servo motor is DS3225. Datasheet of this servo motor 

shown as[7]: 

• Holding Torque (5V): 21 kg / cm 

• Holding Torque (6,8 V): 24,5 kg / cm 

• Speed: 0.15 sec / 60 ° (5V) / 0,13 sec / 60 ° (6,8 V) 

• Operating voltage:  4.8 ~ 6.8 dc volt 

• Weight: 60 g 

• Type of Motor: DC Motor 

• Gear Type: Copper and Aluminum 

• Operating frequency: 50-333Hz 

• Size: 40 x 20 x 40,5 mm 
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4 Remote Control based on MQTT 

Protocol 

4.1 Software Programming and MQTT Protocol 

A lightweight messaging protocol called MQTT (Message Queuing Telemetry 

Transport) was created for effective and dependable device-to-device communication, 

especially in constrained settings with little bandwidth or high latency. Messages can 

be published to topics by devices or applications using the publish-subscribe 

messaging pattern used by MQTT, and other devices or applications can subscribe to 

those topics to receive the messages. 

Mosquitto should be installed into the Rasperry Pi to be able to use MQTT in it. Eclipse 

Mosquitto is an open source (EPL/EDL licensed) message broker that implements the 

MQTT protocol versions 5.0, 3.1.1 and 3.1. Mosquitto is lightweight and is suitable 

for use on all devices from low power single board computers to full servers. 

 

Figure 4.1 Simple overview of the MQTT protocol for robot and PC 

4.1.1.1 Publish-Subscribe Messaging Pattern 

By placing a broker in the middle, the publish-subscribe pattern in MQTT decouples 

message senders (publishers) from message receivers (subscribers). Publishers are in 

charge of sending communications to the broker without knowing whether or not they 

will be read by anyone. By subscribing to particular topics on the broker, subscribers 

indicate their interest in receiving messages. The broker serves as a middleman, 

transferring published messages from publishers to the appropriate subscribers. 
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In this thesis, messages should be published and subscribed in both Raspberry Pi 

python and PC with the C# to be able to exchange the data and control the mobile and 

serial robot arm. Simple code snippet can be seen below. 

private void gripperForward_Click(object sender, EventArgs e) 
{ 

Task.Run(() => 
{ 

if (mqttClient != null && mqttClient.IsConnected) 
{ 

mqttClient.Publish("testtopic", 
Encoding.UTF8.GetBytes("Gripper Forward")); 
} 

}); 

} 

 

Figure 4.2 Communication with the Broker 

Additionally, connection needs to be created by the C# tool on the PC. 

 

Figure 4.3 Establishing of the connection in the PC 

4.1.1.2 MQTT Broker 

A central server known as the MQTT broker serves as a go-between for publishers and 

subscribers. Based on the topic hierarchy and subscription patterns, it receives 

published messages from publishers and distributes them to the appropriate 

subscribers. The broker is in charge of overseeing client connections, dealing with 

subscriptions and unsubscriptions, and making sure messages are delivered 

consistently. Popular MQTT broker implementations are readily accessible, including 

Mosquitto, HiveMQ, and EMQ.In this thesis, HiveMQ broker have been used. 
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4.1.1.3 MQTT Topics 

In MQTT, topics act as a hierarchical structure and constitute the foundation for 

message filtering and routing. A topic is a string that designates a message's subject or 

category. Similar to a file system path, topics are arranged hierarchically using forward 

slashes (/) as separators. Examples of acceptable MQTT subjects include 

"sensors/temperature" and "devices/+/status". Multiple levels are possible for topics, 

allowing for adaptable subscription structures. In subscriptions, wildcards can be used 

to match various topics: The topic hierarchy is just one level deep when using the "+" 

wildcard. The wildcard "#" matches levels of any number, including 0 or more levels. 

For instance, "devices/+/status" will match subjects such as "devices/device1/status" 

and "devices/device2/status" if you subscribe to it. 

 

Figure 4.4 Topic of the communication 

In the publish-subscribe approach, message decoupling and effective message delivery 

are made possible by publishers and subscribers interacting with the MQTT broker. 

Subscribers receive communications by subscribing to pertinent topics, and publishers 

publish messages to specified topics. Based on the subscribers' subscriptions and the 

subject hierarchy, the broker makes sure that published messages are delivered to the 

correct subscribers. 

MQTT is a flexible and scalable messaging architecture that works well for Internet of 

Things (IoT) applications where a large number of devices need to exchange data in a 

quick and effective way. Across distributed systems, it enables simple integration, real-

time communication, and efficient information dissemination. 

4.1.1.4 C# WinForm Application & Python Script for Remote Control 

First of everything, connection to the MQTT broker should be established, this can be 

done with the “Start Connection” button with the simple code snippet of the function. 

Task.Run(() => 
{ 
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mqttClient = new MqttClient("broker.hivemq.com"); 
mqttClient.MqttMsgPublishReceived += 

MqttClient_MqttMsgPublishReceived; 
mqttClient.Subscribe(new string[] { "testtopic" }, new byte[] { 

MqttMsgBase.QOS_LEVEL_AT_LEAST_ONCE }); 
mqttClient.Connect("testtopic"); 

}); 

Thanks to the MqttMsgPublishReceived function, tool will be able to read 

the data from the broker continuously, since the message also can be 

published by the robot via Raspberry Pi, it’s code snippet can be seen. 

var message = Encoding.UTF8.GetString(e.Message); 
if (message.StartsWith("Servo1")) 
{ 

string pattern = 
@"Servo1\=(.*?),Servo2\=(.*?),Servo3\=(.*?),Servo4\=(.*)"; 

RegexOptions options = RegexOptions.Multiline; 
foreach (Match m in Regex.Matches(message, pattern, options)) 
{ 

firstJoint.Invoke((MethodInvoker)(() => firstJoint.Text = 
m.Groups[1].Value)); 

secondJoint.Invoke((MethodInvoker)(() => secondJoint.Text = 
m.Groups[2].Value)); 

thirdJoint.Invoke((MethodInvoker)(() => thirdJoint.Text = 
m.Groups[3].Value)); 

fourthJoint.Invoke((MethodInvoker)(() => fourthJoint.Text = 
m.Groups[4].Value)); 

      } 
} 

 

Figure 4.5 Main view and control of the motors on WinForm tool 
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4.1.1.5 Robot Control Window 

In this window, each motor included in the mobile and robot arm can be controlled to 

forward and backward, forward will increase robot angle 20 degrees and backward 

will decrease robot angle 20 degrees, with this window mobile and serial robot can be 

controlled manually to the desired point. 

4.1.1.6 Robot Info Window 

With this window mobile and serial robot arm control can be controlled automatically 

with Forward and Inverse kinematics automatization. 

Robot Position X, Y, Z represents position of the end-effector for the gripper, Mobile 

Position X and Y represents position of the mobile robot about the save mobile origin 

from the Mobile Origin save button of the tool. Joint Angle 1, 2, 3 ,4  and gripper angle 

represents angles of the servo motors. Whenever Robot Position X, Y, and Z is entered 

Joint Angles’ can be calculated by “Inverse” button which calls InverseKinematics 

function, this calculation and end-effector position can be checked by the “Forward” 

button that calls ForwardKinematics function.  

By the “Get Robot Positions” button, C# tool will publish data to the MQTT broker 

via topic, raspberry pi python script will be reading the on messages from the broker 

again via same topic, whenever this button is clicked desired data will be published 

and python script will identify it thanks to its subscription and then raspberry pi will 

behave as publisher to send real-time data from the robot to the C# Tool, PC.  

Automatized tasks can be handled with the “Run Robot”, whenever end-effector 

position is decided and inverse kinematics is calculated automatically by the tool, “Run 

Robot” button will change values of the servo motors to the calculated joint angle 

values by publishing textbox values filled by the calculation the the MQTT broker via 

topic, and then raspberry pi will identify and resolve it with the Regular Expression 

(Regex) usage to check each joint angle value of the servo motors from the input text 

sent by the C# Tool. Simple part of the “Run Robot” button functionality can be seen. 

var robotRunningTest = 
"RunServo1="+firstJoint.Text+",RunServo2="+secondJoint.Text+",RunServo3="
+thirdJoint.Text+",RunServo4="+fourthJoint.Text+","; 
Task.Run(() => 
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{ 
if (mqttClient != null && mqttClient.IsConnected) 
{ 

                                     
mqttClient.Publish("testtopic",Encoding.UTF8.GetBytes(robotRunningTest)); 
}}); 

 

Figure 4.6 Control of the robot automatically by direct and inverse analysis 

Direct and inverse kinematics will be automatically handled by the WinForm C# tool 

to find joint angles (servo motor angles) from the end-effector X, Y, Z position of the 

robotic arm. Information of the end effector position will be received by the python 

script running on the raspberry pi which behaves like a publisher in this case. 

Necessary transformation matrices were defined to be used in the equations, in 

addition to this MathKernel could be used by using NuGet Package of the external 

tool. MultiplyMatrix function were written to multiply two matrices, Regex were used 

to extract equation result as radian and then it was converted to angle.  

There was before jitter when controlling the servo motors, the issue was figured out 

and resolved by using PiGPIOFactory as an input for the servo motor variable 

decleration, in this case pigpiod service needs to be run by “sudo pigpiod” command. 
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Some parts of the initial version of the Raspberry Pi python code can be seen below. 

from gpiozero import AngularServo 

import pigpio 

from time import sleep 

import paho.mqtt.client as mqtt 

import re 

from gpiozero.pins.pigpio import PiGPIOFactory 

 

factory = PiGPIOFactory() 

 

servo = AngularServo(18, min_angle=-90, max_angle=90, 

pin_factory=factory) 

servo2 = AngularServo(23, min_angle=-90, max_angle=90, 

pin_factory=factory) 

servo3 = AngularServo(24, min_angle=-90, max_angle=90, 

pin_factory=factory) 

servo4 = AngularServo(25, min_angle=-90, max_angle=90, 

pin_factory=factory) 

servo5 = AngularServo(12, min_angle=-90, max_angle=90, 

pin_factory=factory) 

 

def on_connect(client, userdata, flags, rc): 

    print("Connected to the broker succesfully!"+str(rc)) 

    client.subscribe("testtopic") 

 

def on_message(client, userdata, msg): 

    print(str(msg.payload)) 

    if (str(msg.payload) == "Forward1"): 

        servo.angle = 90 

    elif (str(msg.payload) == "Backward1"): 

        servo.angle = 0 

    elif (str(msg.payload) == "Forward2"): 

        servo2.angle = servo.angle + 20 

    elif (str(msg.payload) == "Backward2"): 

        servo2.angle = servo.angle - 20 

    elif (str(msg.payload) == "Forward3"): 

        servo3.angle = servo.angle + 20 

    elif (str(msg.payload) == "Backward3"): 

        servo3.angle = servo.angle - 20 

    elif (str(msg.payload) == "Forward4"): 

        servo4.angle = 90 

        print("test item") 

    elif (str(msg.payload) == "Backward4"): 

        servo4.angle = 0 

    elif (str(msg.payload) == "Get Data"): 
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        servoAngles = "Servo1="+ str(servo.angle) + ",Servo2=" + 

str(servo2.angle) + ",Servo3=" + str(servo3.angle) + ",Servo4=" + 

str(servo4.angle) 

        client.publish("testtopic", servoAngles) 

    elif (str(msg.payload).startswith("RunServo1")): 

        regex = 

r"RunServo1\=(.*?),RunServo2\=(.*?),RunServo3\=(.*?),RunServo4\=(.*)" 

        pattern = re.compile(regex) 

        for match in pattern.finditer(str(msg.payload)): 

            servo.angle = int(match.group(1)) 

            sleep(100) 

            servo2.angle = int(match.group(2)) 

            sleep(100) 

            servo3.angle = int(match.group(3)) 

            sleep(100) 

            servo4.angle = int(match.group(4)) 

    elif (str(msg.payload) == "Gripper Forward"): 

        servo5.angle = servo5.angle + 20 

    elif (str(msg.payload) == "Gripper Backward"): 

        servo5.angle = servo5.angle - 20 

    print(msg.topic + " " + str(msg.payload)) 

 

    // Mobile Conditions     

    if (str(msg.payload) == "MobileForward1"): 

        GPIO.output(in1,GPIO.HIGH) 

        GPIO.output(in2,GPIO.LOW) 

    elif (str(msg.payload) == "MobileBacward1"): 

        print("backward") 

        GPIO.output(in1,GPIO.LOW) 

        GPIO.output(in2,GPIO.HIGH) 

 GPIO.cleanup() 

client = mqtt.Client() 

client.on_connect = on_connect 

client.on_message = on_message 

client.connect("broker.hivemq.com", 1883, 60) 

client.loop_forever() 
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5 Prototyping of the Robotic Arm 

5.1 Assembly and Specification of the Mechanism 

5.1.1 Materials 

The type of material for the robot arm needed to be chosen before employing laser 

cutting. To make the base and linkages stronger and more affordable, sheet metal were 

selected. Transmission steel used for the shaft. 

After producing everything is needed, there was some issues during the assembling 

phase. The alignment of the shaft and motor shaft is the issue at hand. Spacer should 

be employed in order to resolve this issue. Delrin fiber were used for this spacer. 

Additionally, in order to reduce friction and achieve balanced movement, Delrin fiber 

were also employed in the rotating portion of the base. 

5.1.2 Weight Analysis for the Links 

Weight analyses were handled to sheet metal of the Link-1. There are two Link-1 in 

the robot arm. 

 

Figure 5.1 Weight of the Link-1 
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5.1.3 Assembly of the Robot Arm 

During assembly, the robot arm's base began. A top tray, bottom tray, side holders, 

and fiber delrin were used in the first phase of assembly. 

 

Figure 5.2 Base of the robot arm 

The assembly was then completed by adding the spinning portion of the base. There 

were alignment problems with the motor shaft and shaft within this spinning 

component. The use of fiber delrin was a solution to these alignment issues. As an 

example, consider the following: 

 

Figure 5.3 Fiber Derlin 
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After that, the first link to the seating component of our system was fully assembled. 

A sheet bending issue that occurred during the laser cutting process was present in 

this seating component. The heating procedure that was used to successfully bend the 

seating portion was implemented to remedy this issue. 

 

Figure 5.4 Bending test 

 

Figure 5.5 Heating process 

The set screw hole was opened once the issue was fixed, and tapping was then done. 

 

Figure 5.6 Assembly of the upper body 
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The assembly was proceeded by connecting the seating part of the upper body to the 

base. 

 

Figure 5.7 Assembly of base to the body 

After the two links of the robot is assembled to the base of the robot arm, the servo 

motor holding parts made of sheet metal are welded to the links so that the servo motor 

can be fixed to be able to control the shafts. Additionally, another sheet metal is welded 

to the third link to be able to assemble and control the fourth joint, holding part of the 

last servo motor were also welded to that sheet metal. 

 

Figure 5.8 Fourth Joint and Gripper 
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After that, assembly of the mobile robot has been handled, DC motors and gear system 

of the mobile robot is checked, configured and fixed. Sheet metal was produced for 

the mobile robot and robot arm assembly, Delrin was used for this assemply in addition 

to sheet metal. It can be seen below. 

 

Figure 5.9 Front side of the mobile robot 

 

Figure 5.10 Back side of the mobile robot 

 

Figure 5.11 Wheels and gear system with DC motor 
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Assembly of the mobile and serial robot arm has been established. 

 

Figure 5.12 Compound mobile and serial robot arm 

In this thesis, additionally to the robot arm, mobile robot can be also controlled 

remotely with MQTT protocol by publish and subscriber pattern from the desired topic 

from the broker. In that case, mobile robot DC motor can be controlled from the C# 

WinForm tool.  

At the circuit level, electrical electronic parts such as voltage reducer, cable, LiPo 

battery, DC power supply, L298N motor driver, servo motors, Raspberry Pi 3B, 

breadboard and etc. were used. 

5.2 Trajectory Planning  

Trajectory planning is planning of the desired movements of the manipulator. 

Manipulators with multi degree of freedom for accomplishing various complex 

manipulation in the work space. Path is only for geometric description but trajectory 

also include timing change of the manipulator.  

Trajectory planning include 2 terms that are joint space and operational space.  Joint 

space is motion to be made by the robot by its joint values.  The motion between the 
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two points is unpredictable. In operational space two points is known at all times and 

it is controllable.  

5.2.1 Joint-Space Trajectories  

Trajectories are specified by defining some characteristic points that are  directly 

assigned by some specifications and  assigned by defining desired configurations x in 

the work-space, which are then converted in the joint space using the inverse kinematic 

model.  

In that given points trajectories must be computationally efficient, the position and 

velocity profiles must be continuos functions of time, undesired effects must be 

minimized or completely avoided.  

5.2.2 Polynomial Trajectories 

In these cases a trajectory is specified by assigning initial and final conditions on: time 

, position, velocity, acceleration. Then, the problem is to determine a function q = q(t) 

so that condition is satisfied. 

Polynomial functions should solved as;  

𝑞(𝑡)  =  𝑎0 + 𝑎1𝑡 +  𝑎2𝑡
2 + . . . + 𝑎𝑛𝑡

𝑛                (5.1) 

The degree n (3, 5, ...) of the polynomial depends on the number of boundary 

conditions that must be verified and on the desired “smoothness” of the trajectory. 

Given an initial and a final instant ti,tf , a (segment of a) trajectory may be specified by 

assigning initial and final conditions:  

• initial position and velocity 𝑞𝑖 , 𝑞
.

𝑖 

• final position and velocity 𝑞𝑓 , 𝑞
.

𝑓  

There are four boundary conditions in this situation, so a polynomial of degree at least 

3 must be considered from the Eq. 5.1. 

𝑞(𝑡)  =  𝑎0 + 𝑎1𝑡 +  𝑎2𝑡
2  +  𝑎3𝑡

3
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Where the four parameters a0, a1, a2, a3 must be defined so that the boundary conditions 

are satisfied. 

From the boundary conditions, it follows that 

𝑞(𝑡𝑖)  =  𝑎0 + 𝑎1𝑡𝑖 +  𝑎2𝑡𝑖
2  +  𝑎3𝑡𝑖

3  =  𝑞𝑖                            (5.2) 

 

Equations should be followed as shown below, by taking derivative of the equation. 

𝑞
.
(𝑡𝑖)  =  𝑎1 + 2𝑎2𝑡𝑖  +  3𝑎3𝑡𝑖

2   =  𝑞
.

𝑖  

 

𝑞(𝑡𝑓)  = 𝑎0 + 𝑎1𝑡𝑓 + 𝑎2𝑡𝑓
2  +  𝑎3𝑡𝑓

3  =  𝑞𝑓 

𝑞
.
(𝑡𝑓)  =  𝑎1 + 2𝑎2𝑡𝑓  + 3𝑎3𝑡𝑓

2  = 𝑞
.

𝑓 

In order to solve these equations, the first moment of the motion is assumed that  

ti = 0.  

Therefore:  

a0  = 𝑞𝑖  

a1 = 𝑞
.

𝑖  

a2 = ( −3(𝑞𝑖 − 𝑞𝑓) − (2 𝑞
.

𝑖 + 𝑞
.

𝑓) tf )  /  tf 
2 

a3 = ( 2(𝑞𝑖 − 𝑞𝑓) + (𝑞
.

𝑖 + 𝑞
.

𝑓) tf  ) /  tf 
3 

5.2.3 Task Planning for the End Effector 

For the robot arm, necessary steps of the task are determined. First of all, start position 

is setted. This point represent as a pole position and the movement starts from here. 

After that, the movement path of the robot arm are needed to be defined. For this 

movement, the way points of the end effector are determined. Thanks to these way 

points, joint positions and velocities can be found.   
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Firstly, waypoints of the robot arm are identified according to workspace of the robot 

arm. These waypoints also include pole position and final position of the end effector.  

 

 

 

 

 

Pole position of the robot arm is selected by using the workspace analysis which is 

done previously. This pole position coordinates are shown below: 

 

After the selection of coordinates of the pole position, inverse kinematics is applied to 

find corresponding joint positions. After inverse analysis of robot arm, selection of the 

joint position done according to robot arm. 

Q1 = 1.0472 Q2 = 2.71313  Q3 = -0.729867 Q4 = 2.22228 

 

 

 

 

Figure 5.13 Waypoints of our Robot Arm 

Figure 5.14 Workspace analysis for the pole position 
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Finally, after finding the joint positions by inverse analysis, accuracy of these positions 

is checked according to direct analysis.  

  

 

 

The second position of the robot arm is selected by using the workspace analysis which 

is done previously. This second position coordinates are shown below: 

After the selection of coordinates of the second position, inverse kinematics is applied 

for finding joint positions.  

Q1 = -0.70127  Q2 = 1.07024  Q3 = -1.542 Q4 = 0  

Finally, after finding the joint positions by inverse analysis, accuracy of these positions 

checked according to direct analysis. 

  

 

 

Figure 5.16 Joint Angles 

Figure 5.17 Workspace analysis for the second position 

Figure 5.19 Joint angles  Figure 5.18 End-effector positions 

Figure 5.15 End-Effector Position 
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Third position of the robot arm is selected by using the workspace analysis which is 

done previously. This third position coordinates are shown below: 

After selection of coordinates of third position, inverse kinematics is applied for 

finding joint positions. 

Q1 = 1.18682 Q2 = 2.17322 Q3 = -0.473627 Q4  1.66013 

Finally, after finding the joint positions by inverse analysis, the accuracy of these 

positions are checked according to the direct analysis. 

 

 

  

Fourth position of the robot arm is selected by using the workspace analysis which is 

done previously. This fourth position coordinates are shown below: 

 

 

 

 

 

 

Figure 5.20 Workspace analysis for the third postion 

  Figure 5.22 Joint Angles Figure 5.21 End-effector positions 

Figure 5.23 Workspace analysis for the fourth position 
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After the selection of coordinates of the last position, inverse kinematics is applied for 

finding joint positions. 

Q1 = 1.16937 Q2 = 1.90315 Q3 = -0.482841 Q4 = 1.57087 

  

 

 

  

5.2.4 Assumed Polynomial Functions for Each Joint Positions 

First Joint 

In order to find polynomial equations in the first step, first time of the joint is assumed 

as ti = 0.  

Therefore:  

a0 = 𝑞𝑖
 

 

a1 = 𝑞
.

𝑖  

a2 = ( −3(𝑞𝑖 − 𝑞𝑓) − (2 𝑞
.

𝑖 + 𝑞
.

𝑓) tf )  /  tf 
2 

a3 = ( 2(𝑞𝑖 − 𝑞𝑓) + (𝑞
.

𝑖 + 𝑞
.

𝑓) tf  ) /  tf 
3 

For pole position of our robot arm, velocity is assumed as 0 so; 

                                                                                                         
𝑞
.

11= 0 

Then;      

a1= 0 

According to position of first joint for pole position of our robot arm, previously 

position is found as; 

Figure 5.24 End-effector position Figure 5.25 Joint Angles 
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      𝑞11= 1.0472 

Then;      

a0= 1.0472 

 

 

For finding a2 ,  𝑞𝑓value should be known, then this value equal to joint value in the 

second position so; 

      𝑞𝑓1= -0.70127 

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This 

assumption is made according to motor datasheet. 

Then;  

a2= ( −3(1.0472+0.70127) − (2 * 0 +0.07) tf )  /  tf 
2 

a3 = ( 2( 1.0472+0.70127 ) + ( 0 +0.07) tf  ) /  tf 
3 

Second Joint 

In order to find polynomial equations in first step, the moment that ti assumed as 0.  

For pole position of our robot arm, velocity is assumed as 0 so; 

𝑞
.

21= 0 

Then;      

a1= 0 

According to position of second joint for pole position of our robot arm, previously 

this position is found as; 

𝑞21= 2.71313 
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Then;      

a0= 2.71313 

 

 

For finding a2,  𝑞𝑓value should be known, then this value equal to joint value in the 

second position so ; 

      𝑞𝑓1=  1.07024 

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This 

assumption is made according to motor datasheet. 

Then;  

a2= ( −3(2.71313-1.07024) − (2 * 0 +0.07 ) tf )  /  tf 
2 

a3 = ( 2(2.71313-1.07024) + (0 +0.07) tf  ) /  tf 
3 

 

Third Joint 

For pole position of our robot arm, velocity is assumed as 0 so ; 

𝑞
.

31= 0 

Then;      

a1= 0 

According to position of third joint for pole position of our robot arm, previously this 

position is found as; 

𝑞31= - 0.729867 

Then;      
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a0= - 0.729867 

 

 

For finding a2,  𝑞𝑓value should be known, then this value equal to joint value in the 

second position so ; 

      𝑞𝑓3=  -1.542  

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This 

assumption is made according to motor datasheet. 

Then;  

a2= ( −3(- 0.729867+1.542) − (2 * 0 +0.07 ) tf )  /  tf 
2 

a3 = ( 2(- 0.729867+1.542) + (0 +0.07) tf  ) /  tf 
3 

Fourth Joint 

For pole position of our robot arm, velocity is assumed as 0 so; 

𝑞
.

41= 0 

Then;      

a1= 0 

According to position of fourth joint for pole position of our robot arm, previously this 

position is found as; 

𝑞41= 2.22228 

Then;      

a0= 2.22228 
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For finding a2,  𝑞𝑓value should be known, then this value equal to joint value in the 

second position so; 

𝑞𝑓4= 0 

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This 

assumption is made according to motor datasheet. 

Then;  

a2= ( −3(2.22228 - 0) − (2 * 0 +0.07 ) tf )  /  tf 
2 

a3 = ( 2(2.22228 - 0) + ( 0 +0.07) tf  ) /  tf 
3 

 

Finding Polynomial Equations For Second Position 

First Joint 

After finding this equation for pole position ti can’t considered as 0. So equations are 

became as; 

a0 = 𝑞𝑖  

a1 = 𝑞
.

𝑖  

a2 = ( −3(𝑞𝑖 − 𝑞𝑓) − (2 𝑞
.

𝑖 + 𝑞
.

𝑓) (tf - ti))  /  (tf - ti) 
2 

a3 = ( 2(𝑞𝑖 − 𝑞𝑓) + (𝑞
.

𝑖 + 𝑞
.

𝑓) (tf - ti))  /  (tf - ti) 
3 

According to position of first joint for second position of our robot arm, previously 

this position is found as; 

𝑞12= -0.70127 
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Then;      

a0= -0.70127 

 

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This 

assumption is made according to motor datasheet. Velocity will be equal throughout 

the entire movement. 

Therefore; 

𝑞
.

12= 0.07 

Then;      

a1= 𝑞
.

12 

For finding a2,  𝑞𝑓value should be known, then this value equal to joint value in the 

third position so; 

𝑞𝑓1= 1.16937 

a2= ( −3(-0.70127-1.18682) − (2 *0.07 +0.07 ) (tf - ti))  /  (tf - ti) 
2 

a3 = ( 2(-0.70127 -1.18682) + (0.07 +0.07) (tf - ti))  /  (tf - ti) 
3 

Second Joint 

According to position of second joint for second position of our robot arm, previously 

this position is found as; 

𝑞22= 1.07024 

Then;      

a0= 1.07024 
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For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This 

assumption is made according to motor datasheet. Velocity will be equal throughout 

the entire movement. 

Therefore; 

𝑞
.

22= 0.07 

Then;      

a1= 0.07 

 

For finding a2 ,  𝑞𝑓value should be known, then this value equal to joint value in the 

third position so; 

𝑞𝑓2= 2.17322 

a2= ( −3(1.07024 - 2.17322) − (2 * 0.15 +0.15 ) (tf - ti))  /  (tf - ti) 
2 

a3 = ( 2(1.07024 - 2.17322) + (2 * 0.15 +0.15) (tf - ti))  /  (tf - ti) 
3 

Third Joint 

According to position of third joint for second position of our robot arm, previously 

this position is found as; 

𝑞32
 
= -1.542 

Then;      

a0 = -1.542 

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This 

assumption is made according to motor datasheet. Velocity will be equal throughout 

the entire movement. 

Therefore; 
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𝑞
.

32= 0.07 

Then;      

a1= 0.07 

For finding a2 ,  𝑞𝑓value should be known, then this value equal to joint value in the 

third position so; 

𝑞𝑓3= -0.473627 

a2= ( −3(-1.542 + 0.473627) − (2 * 0.07 +0.07 ) (tf - ti))  /  (tf - ti) 
2 

a3 = ( 2(-1.542 + 0.473627) + (0.07 +0.07) (tf - ti))  /  (tf - ti) 
3 

Fourth Joint 

According to position of fourth joint for second position of our robot arm, previously 

this position is found as; 

𝑞42
 
=   0 

Then;      

a0 =   0 

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This 

assumption is made according to motor datasheet. Velocity will be equal throughout 

the entire movement. 

 

Therefore; 

𝑞
.

42= 0.07 

Then;      

a1= 0.07 
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For finding a2 ,  𝑞𝑓value should be known, then this value equal to joint value in the 

third position so ; 

𝑞𝑓4= 1.66013 

a2= ( −3(0 - 1.66013) − (2 * 0.15 +0.15 ) (tf - ti))  /  (tf - ti) 
2 

a3 = ( 2(0 - 0.473627) + (2 * 0.15 +0.15) (tf - ti))  /  (tf - ti) 
3 

Finding Polynomial Equations For Third Position 

First Joint 

According to position of first joint for third position of our robot arm, previously this 

position is found as; 

𝑞13= 1.18682 

Then;      

a0 = 1.18682 

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This 

assumption is made according to motor datasheet. Velocity will be equal throughout 

the entire movement. 

Therefore; 

𝑞
.

13= 0.07 

Then;      

a1= 0.07 

For finding a2 ,  𝑞𝑓value should be known, then this value equal to joint value in the 

fourth position so; 

𝑞𝑓1= 1.16937 

a2= ( −3(1.18682-1.16937) − (2 * 0.07+0.07 ) (tf - ti))  /  (tf - ti) 
2 
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a3 = ( 2(1.18682-1.16937) + (0.07+0.07) (tf - ti))  /  (tf - ti) 
3 

Second Joint 

According to position of second joint for third position of our robot arm, previously 

this position is found as; 

𝑞23= 2.17322 

Then;      

a0= 2.17322 

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This 

assumption is made according to motor datasheet. Velocity will be equal throughout 

the entire movement. 

Therefore; 

𝑞
.

23
= 0.07 

Then;      

a1= 0.07 

 

For finding a2,  𝑞𝑓value should be known, then this value equal to joint value in the 

fourth position so; 

𝑞𝑓2= 1.90315 

a2= ( −3(2.17322-1.90315) − (2 * 0.07 +0.07 ) (tf - ti))  /  (tf - ti) 
2 

a3 = ( 2(2.17322-1.90315) + (0.07 +0.07) (tf - ti))  /  (tf - ti) 
3 

Third Joint 

According to position of third joint for third position of our robot arm, previously this 

position is found as; 
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𝑞33= -0.473627 

Then;      

a0 = -0.473627 

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This 

assumption is made according to motor datasheet. Velocity will be equal throughout 

the entire movement. 

Therefore; 

𝑞
.

33
= 0.07 

Then;      

a1= 0.07 

For finding a2,  𝑞𝑓value should be known, then this value equal to joint value in the 

fourth position so; 

𝑞𝑓3= -0.482841 

a2= ( −3(-0.473627+0.482841) − (2 * 0.07 +0.07 ) (tf - ti))  /  (tf - ti) 
2 

a3 = ( 2(-0.473627+0.482841) + (0.07 +0.07) (tf - ti))  /  (tf - ti) 
3 

Fourth Joint 

According to position of fourth joint for third position of our robot arm, previously 

this position is found as; 

𝑞43= 1.66013 

Then;      

a0= 1.66013 
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For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This 

assumption is made according to motor datasheet. Velocity will be equal throughout 

the entire movement. 

Therefore; 

𝑞
.

43
= 0.07 

Then;      

a1= 0.07 

For finding a2, 𝑞𝑓value should be known, then this value equal to joint value in the 

fourth position so; 

𝑞𝑓4= 1.57087 

a2= ( −3(1.66013-1.57087) − (2 * 0.07 +0.07 ) (tf - ti))  /  (tf - ti) 
2 

a3 = ( 2(1.66013-1.57087) + ( 0.07 +0.07) (tf - ti))  /  (tf - ti) 
3 

Finding Polynomial Equations for the Last Position 

First Joint 

According to position of first joint for fourth position of our robot arm, previously this 

position is found as; 

𝑞14= 1.16937 

Then;      

a0= 1.16937 

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This 

assumption is made according to motor datasheet. Velocity will be equal throughout 

the entire movement. 

Therefore; 
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𝑞
.

14= 0.07 

Then;      

a1= 0.07 

For finding a2 ,  𝑞𝑓value should be known, then this value equal to joint value in the 

fourth position so; 

𝑞𝑓1= 1.16937 

a2= ( −3(1.16937-1.16937) − (2 *0.07 +0.07) (tf - ti))  /  (tf - ti) 
2 

a3 = ( 2(1.16937-1.16937) + (0.07 +0.07) (tf - ti))  /  (tf - ti) 
3 

 

Second Joint 

According to position of second joint for fourth position of our robot arm, previously 

this position is found as ; 

𝑞24= 1.90315 

Then;      

a0= 1.90315 

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This 

assumption is made according to motor datasheet. Velocity will be equal throughout 

the entire movement. 

Therefore; 

𝑞
.

14= 0.07 

Then;      

a1= 0.07 
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For finding a2 ,  𝑞𝑓value should be known, then this value equal to joint value in the 

fourth position so ; 

𝑞𝑓2= 1.90315 

a2= ( −3(1.90315-1.90315) − (2 * 0.07 +0.07) (tf - ti))  /  (tf - ti) 
2 

a3 = ( 2(1.90315-1.90315) + (0.07 +0.07) (tf - ti))  /  (tf - ti) 
3 

Third Joint 

According to position of third joint for fourth position of our robot arm, previously 

this position is found as; 

𝑞34=  -0.482841 

Then;      

a0= -0.482841 

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This 

assumption is made according to motor datasheet. Velocity will be equal throughout 

the entire movement. 

Therefore; 

𝑞
.

34= 0.07 

Then;      

a1= 0.07 

For finding a2,  𝑞𝑓value should be known, then this value equal to joint value in the 

fourth position so; 

𝑞𝑓3= -0.482841 

a2= ( −3(-0.482841+0.482841) − (2 * 0.07 +0.07) (tf - ti))  /  (tf - ti) 
2 

a3 = ( 2(-0.482841+0.482841) + (0.07 +0.07) (tf - ti))  /  (tf - ti) 
3 
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Fourth Joint 

According to position of fourth joint for fourth position of our robot arm, previously 

this position is found as; 

𝑞44= 1.57087 

Then;      

a0= 1.57087 

For finding a2, also𝑞
.

𝑓 value should be known, this value is assumed as ‘0.07’. This 

assumption is made according to motor datasheet. Velocity will be equal throughout 

the entire movement. 

Therefore; 

𝑞
.

44= 0.07 

Then;      

a1= 0.07 

For finding a2, 𝑞𝑓value should be known, then this value equal to joint value in the 

fourth position so; 

𝑞𝑓4= 1.57087 

a2= ( −3(1.57087-1.57087) − (2 * 0.07 +0.07) (tf - ti))  /  (tf - ti) 
2 

a3 = ( 2(1.57087-1.57087) + (0.07 +0.07) (tf - ti))  /  (tf - ti) 
3 

5.3 NUMERICAL POLYNOMIAL FUNCTIONS  

After found all parametrical polynomial functions, all numeric values should be found 

according to parametrical equations. 

First Joint with Numerical Values 
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Numerical values were found by entering all values in numerically according to 

parametrical polynomial functions. 

 

 

 

 

 

 

 

 

Numerical values are entered in the parametrical polynomial function, then position 

graph is drawn according to numerical polynomial function. 

 

 

 

 

 

The position graph of the first position at each position was found with the same 

method and checked to see if it was following each other.   

In the first graph the movement of the first joint from the first position to the second 

position starts at 1.0472 and ends at -0.70127, and these values can be seen on the 

graph. 

0.5 1.0 1.5 2.0

0.5

0.5

1.0

Figure 5.26 First Joint Motion from First Position to Second Position 

Figure 5.27 Position Change Graph 
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In the second graph the movement of the first joint from the second position to the 

third position should start at -0.70127 and end at 1.18682, and these values can also be 

seen on the graph. 

Therefore, it was concluded that the first two movements followed each other. This 

compare shown below; 

 

 

 

 

 

 

 

 

 

 

 

In the third graph the movement of the first joint from the third position to the fourth 

position starts at 1.18682 and ends at 1.16937, and these values can be seen on the 

graph. 

In the fourth graph the movement of the first joint from the fourth position to the fourth 

position which is made for to get zero to joint velocities should  start at 1.16937 and 

end at 1.16937, and these values can also be seen on the graph. 
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1.0
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0.5

0.5

1.0

Figure 5.28 First to Second Position 

Figure 5.29 Second to Third Position 
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Therefore, it was concluded that the third movement followed the second and the 

fourth movement followed the third thank to graphs which are drawn according to 

numerical polynomial functions. This compare shown below; 

 

 

 

 

 

 

 

 

 

These data were entered as a SolidWorks data points for using motion simulation of 

our robot arm. All values are converted from radians to degrees. 

 

Figure 5.32 SolidWorks Data Entries 
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Figure 5.30 Third to Fourth Position 

Figure 5.31 Stop Motion of the Robot Arm 
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Figure 5.33 SolidWorks Data Entries for other joints 

After, finding first joint position graphs for each position change, velocity change 

graphs is found by taking derivative of the third order polynomial function. Initially 

the velocity will be 0, then the velocity rises to constant speed of 0.07. 

 

Figure 5.34 First Joint Velocity From First Position to Second Position 
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After the velocity rised to constant speed of 0.07, it will be equal throughout the entire 

movement as 0.07. 

 

Figure 5.35 Constant Velocity of the Second and Third Position Change 

Finally, the velocity will decrease to 0 again and the motion will end. 

 

 

 

 

 

Finally, after finding first joint velocity graphs for each position change, acceleration 

change graphs is found by taking derivative of the velocity polynomial functions.  

 

Figure 5.37 Acceleration Change of the Figure 5.28 
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Figure 5.36 Decrease to the ‘0’ Velocity 
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Acceleration calculation was made for each position change. 

Joint Motions for First Position to Second Position 

For second joint in first position to second position;  

 

Figure 5.38 Second Joint From First Position to Second Position 

All numerical data were converted from radians to degrees, then entered as simulation 

data in SolidWorks and the same position graphs were obtained. 

 

Figure 5.39 SolidWorks Motion of the Figure 5.38 

For third joint in first position to second position;  

 

Figure 5.40 Third Joint From First Position to Second Position 
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Figure 5.41 SolidWorks Motion Data of the Figure 5.40 

For the fourth joint in first position to second position;  

 

Figure 5.42 Fourth Joint From First Position to the Second Position 

 

Figure 5.43 SolidWorks Motion Data of Figure 5.42 

All these procedures were repeated for each position change of each joint. Then each 

of them was entered into the SolidWorks as simulation data. 
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5.4 Path Drawing 

The waypoints obtained from the workspace analysis were checked on the graph which 

is drawn by using polynomial equations that was found with cubic polynomial function 

method.  

The polynomial equations obtained after the correctness of our position, velocity and 

acceleration graphs were checked in the workspace analysis by entering these 

polynomial equations into the matlab code in a for loop as ;  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.45 Path Drawing of our Robot Design for Four Position 

Figure 5.44 Data Entry in Matlab as Polynomial Function 
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5.5 Position Change of the Robot Arm 

5.5.1 Position Simulation in SolidWorks 

Pole position of our robot arm shown below; 

 

 

 

 

 

 

 

After pole position to second position, each joint make movement. Below, the robot 

takes the piece.  

 

 

 

 

 

 

After second position to third position, Below is the middle waypoint of the robot. 

  

 

 

 

 

 

 

 

Figure 5.16 The Pole Position to Second Position SolidWorks Simulation 

Figure 5.17 The Second Position to Third Position SolidWorks Simulation 

Figure 5.18 The Third Position to Fourth Position SolidWorks Simulation 
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After third position to fourth position, Below, the robot leaves the piece on the table.  

 

 

 

 

 

 

  

 

5.5.2 Position Simulation in the Produced Robot 

After the robot parts are produced and assembled, its electrical circuit has been done, 

by using python script in the Raspberry Pi which is connected to the compound mobile 

and serial robot and C# WinForm tool executing in the PC, compound mobile and 

serial robot and its joints are controlled.  

 

Figure 5.20 Initial position of the robot arm 

 

 

 

 

Figure 5.19  The Last Position SolidWorks Simulation 
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After robotic arm setup is done, joints were controlled and position is changed as 

shown below to the second position. 

 

Figure 5.21 Second Position of the robot arm 

After robot is reached to second position, it can be stand in there, by running the scripts 

and controlling robot from the C# WinForm tool manually or automatically by the 

inverse kinematics, robot were moved to the final position which was planned to go. 

 

Figure 5.22 Final Position of the robot arm 
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